已知抛物线y
2=4ax(a>0)的焦点为F,以点A(a+4,0)为圆心,|AF|为半径的圆在x轴的上方与抛物线交于M、N两点.
(I)求证:点A在以M、N为焦点,且过点F的椭圆上;
(II)设点P为MN的中点,是否存在这样的a,使得|FP|是|FM|与|FN|的等差中项?如果存在,求出实数a的值;如果不存在,请说明理由.
考点分析:
相关试题推荐
已知函数
(I)求函数g(x)的单调递增区间;
(II)若a>0且函数f(x)与g(x)的图象有公共点,且在该点处的切线相同,用a表示b,并求b的最大值.
查看答案
已知函数f
1(x)=
|.
(I)求数列{a
n}的通项公式;
(II)若数列
.
查看答案
某学校有男教师150名,女教师100人,按照分层抽样的方法抽出5人进行一项问卷调查.
(I)求某老师被抽到的概率及5人中的男、女教师的人数;
(II)若从这5人中选出两人进行某项支教活动,则抽出的两人中恰有一名女教师的概率.
查看答案
如图,DC⊥平面ABC,EB∥DC,AC=BC=EB=2DC=2,∠ACB=120°,P,Q分别为AE、AB的中点.
(I)证明:PQ∥平面ACD;
(II)求异面直线AE与BC所成角的余弦值;
(III)求AD与平面ABE所成角的正弦值.
查看答案
若向量
,在函数
的图象中,对称中心到对称轴的最小距离为
,且当
的最大值为1.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)求函数f(x)的单调递增区间.
查看答案