(I)由2Sn=anan+1,2Sn+1=an+1an+3,知2an+1=an+1(an+2-an),an+2-an=2,由此能求出an=n(n∈N+).
(II)令,=.由(2n-1)•2n=(2n)2-2n=,知,由此能够证明对任意.
【解析】
(I)由题设知2Sn=anan+1,2Sn+1=an+1an+3,
∴2an+1=an+1(an+2-an),
∵an≠0,∴an+2-an=2,
∵a1=1,a2=2,
∴an=n(n∈N+).
(II)令,
=.
∵(2n-1)•2n=(2n)2-2n=,
∴,
,,,
n≥4时,Tn=T3+b4+b5+…+bn
=,
∴对任意.