满分5 > 高中数学试题 >

如图,ABCD是边长为3的正方形,DE⊥平面ABCD,AF∥DE,DE=3AF,...

如图,ABCD是边长为3的正方形,DE⊥平面ABCD,AF∥DE,DE=3AF,BE与平面ABCD所成角为60°.
(Ⅰ)求证:AC⊥平面BDE;
(Ⅱ)求二面角F-BE-D的余弦值;
(Ⅲ)设点M是线段BD上一个动点,试确定点M的位置,使得AM∥平面BEF,并证明你的结论.

manfen5.com 满分网
(I)由已知中DE⊥平面ABCD,ABCD是边长为3的正方形,我们可得DE⊥AC,AC⊥BD,结合线面垂直的判定定理可得AC⊥平面BDE; (Ⅱ)以D为坐标原点,DA,DC,DE方向为x,y,z轴正方向,建立空间直角坐标系,分别求出平面BEF和平面BDE的法向量,代入向量夹角公式,即可求出二面角F-BE-D的余弦值; (Ⅲ)由已知中M是线段BD上一个动点,设M(t,t,0).根据AM∥平面BEF,则直线AM的方向向量与平面BEF法向量垂直,数量积为0,构造关于t的方程,解方程,即可确定M点的位置. 证明:(Ⅰ)因为DE⊥平面ABCD,所以DE⊥AC. 因为ABCD是正方形,所以AC⊥BD, 从而AC⊥平面BDE.…(4分) 【解析】 (Ⅱ)因为DA,DC,DE两两垂直,所以建立空间直角坐标系D-xyz如图所示. 因为BE与平面ABCD所成角为60,即∠DBE=60°, 所以. 由AD=3,可知,. 则A(3,0,0),,,B(3,3,0),C(0,3,0), 所以,. 设平面BEF的法向量为n=(x,y,z),则,即. 令,则n=. 因为AC⊥平面BDE,所以为平面BDE的法向量,. 所以. 因为二面角为锐角,所以二面角F-BE-D的余弦值为.…(8分) (Ⅲ)点M是线段BD上一个动点,设M(t,t,0). 则. 因为AM∥平面BEF, 所以=0,即4(t-3)+2t=0,解得t=2. 此时,点M坐标为(2,2,0), 即当时,AM∥平面BEF.…(12分)
复制答案
考点分析:
相关试题推荐
甲、乙、丙三人独立破译同一份密码,已知甲、乙、丙各自破译出密码的概率分别为manfen5.com 满分网.且他们是否破译出密码互不影响.若三人中只有甲破译出密码的概率为manfen5.com 满分网
(Ⅰ)求甲乙二人中至少有一人破译出密码的概率;
(Ⅱ)求p的值;
(Ⅲ)设甲、乙、丙三人中破译出密码的人数为X,求X的分布列和数学期望EX.
查看答案
设△ABC中的内角A,B,C所对的边长分别为a,b,c,且manfen5.com 满分网,b=2.
(Ⅰ)当manfen5.com 满分网时,求角A的度数;
(Ⅱ)求△ABC面积的最大值.
查看答案
已知数列{an}的各项均为正整数,对于n=1,2,3,…,有manfen5.com 满分网,当a1=11时,a100=    ;若存在m∈N*,当n>m且an为奇数时,an恒为常数p,则p的值为    查看答案
某展室有9个展台,现有3件展品需要展出,要求每件展品独自占用1个展台,并且3件展品所选用的展台既不在两端又不相邻,则不同的展出方法有    种;如果进一步要求3件展品所选用的展台之间间隔不超过两个展位,则不同的展出方法有    种. 查看答案
一个棱锥的三视图如图所示,则这个棱锥的体积为   
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.