满分5 >
高中数学试题 >
设全集U=A∪B,定义:A-B={x|x∈A,且x∉B},集合A,B分别用圆表示...
设全集U=A∪B,定义:A-B={x|x∈A,且x∉B},集合A,B分别用圆表示,则下列图中阴影部分表示A-B的是( )
A.
B.
C.
D.
考点分析:
相关试题推荐
定义τ(a
1,a
2,…,a
n)=|a
1-a
2|+|a
2-a
3|+…+|a
n-1-a
n|为有限项数列{a
n}的波动强度.
(Ⅰ)当a
n=(-1)
n时,求τ(a
1,a
2,…,a
100);
(Ⅱ)若数列a,b,c,d满足(a-b)(b-c)(c-d)>0,求证:τ(a,b,c,d)≤τ(a,c,b,d);
(Ⅲ)设{a
n}各项均不相等,且交换数列{a
n}中任何相邻两项的位置,都会使数列的波动强度增加,求证:数列{a
n}一定是递增数列或递减数列.
查看答案
已知抛物线y
2=2px(p>0)的焦点为F,过F的直线交y轴正半轴于点P,交抛物线于A,B两点,其中点A在第一象限.
(Ⅰ)求证:以线段FA为直径的圆与y轴相切;
(Ⅱ)若
,
,
,求λ
2的取值范围.
查看答案
已知函数
,其中a>0.
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)若直线x-y-1=0是曲线y=f(x)的切线,求实数a的值;
(Ⅲ)设g(x)=xlnx-x
2f(x),求g(x)在区间[1,e]上的最大值.(其中e为自然对数的底数)
查看答案
如图,ABCD是边长为3的正方形,DE⊥平面ABCD,AF∥DE,DE=3AF,BE与平面ABCD所成角为60°.
(Ⅰ)求证:AC⊥平面BDE;
(Ⅱ)求二面角F-BE-D的余弦值;
(Ⅲ)设点M是线段BD上一个动点,试确定点M的位置,使得AM∥平面BEF,并证明你的结论.
查看答案
甲、乙、丙三人独立破译同一份密码,已知甲、乙、丙各自破译出密码的概率分别为
.且他们是否破译出密码互不影响.若三人中只有甲破译出密码的概率为
.
(Ⅰ)求甲乙二人中至少有一人破译出密码的概率;
(Ⅱ)求p的值;
(Ⅲ)设甲、乙、丙三人中破译出密码的人数为X,求X的分布列和数学期望EX.
查看答案