满分5 > 高中数学试题 >

如图,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=,AF=1,M是...

manfen5.com 满分网如图,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=manfen5.com 满分网,AF=1,M是线段EF的中点.
(1)求证AM∥平面BDE;
(2)求二面角A-DF-B的大小;
(3)试在线段AC上一点P,使得PF与CD所成的角是60°.
(I)以C为坐标原点,建立空间直角坐标系,求出各点的坐标,进而求出直线AM的方向向量及平面BDE的法向量,易得这两个向量垂直,即AM∥平面BDE; (2)求出平面ADF与平面BDF的法向量,利用向量夹角公式求出夹角,即可得到二面角A-DF-B的大小; (3)点P为线段AC的中点时,直线PF与CD所成的角为60°,我们设出点P的坐标,并由此求出直线PF与CD的方向向量,再根据PF与CD所成的角是60°构造方程组,解方程即可得到结论. 证明:(Ⅰ)建立如图所示的空间直角坐标系 设AC∩BD=N,连接NE, 则点N、E的坐标分别是(、(0,0,1), ∴=(, 又点A、M的坐标分别是 ()、( ∴=( ∴=且NE与AM不共线, ∴NE∥AM 又∵NE⊂平面BDE,AM⊄平面BDE, ∴AM∥平面BDF 【解析】 (Ⅱ)∵AF⊥AB,AB⊥AD,AF∩AD=A, ∴AB⊥平面ADF ∴为平面DAF的法向量 ∵=•=0, ∴=•=0得,∴NE为平面BDF的法向量 ∴cos<>= ∴的夹角是60° 即所求二面角A-DF-B的大小是60° (3)设P(x,x),,,则 cos=,解得或(舍去) 所以当点P为线段AC的中点时,直线PF与CD所成的角为60°.(12分)
复制答案
考点分析:
相关试题推荐
甲、乙两人在一场五局三胜制的象棋比赛中,规定甲或乙无论谁先赢满三局就获胜,并且比赛就此结束.现已知甲、乙两人每比赛一局甲取胜的概率是manfen5.com 满分网,乙取胜的概率为manfen5.com 满分网,且每局比赛的胜负是独立的,试求下列问题:
(Ⅰ)比赛以甲3胜1而结束的概率;
(Ⅱ)比赛以乙3胜2而结束的概率;
(Ⅲ)设甲获胜的概率为a,乙获胜的概率为b,求a:b的值.
查看答案
已知向量manfen5.com 满分网=(cosθ,sinθ)和manfen5.com 满分网=(manfen5.com 满分网-sinθ,cosθ),θ∈[π,2π].
(1)求|manfen5.com 满分网+manfen5.com 满分网|的最大值;
(2)当|manfen5.com 满分网+manfen5.com 满分网|=manfen5.com 满分网时,求cos(manfen5.com 满分网)的值.
查看答案
已知f(x+y)=f(x)•f(y)对任意的实数x、y都成立,且f(1)=2,则manfen5.com 满分网+manfen5.com 满分网+manfen5.com 满分网+…+manfen5.com 满分网+manfen5.com 满分网=    查看答案
如图,在杨辉三角形中,斜线l的上方从1按箭头方向可以构成一个“锯齿形”的数列{an}:1,3,3,4,6,5,10,…,记其前n项和为Sn,则S19的值为    
manfen5.com 满分网 查看答案
若函数f(x)满足:对于任意x1,x2>0,都有f(x1)>0,f(x2)>0且f(x1)+f(x2)<f(x1+x2)成立,则称函数f(x)具有性质M.给出下列四个函数:①y=x3,②y=log2(x+1),③y=2x-1,④y=sinx.其中具有性质M的函数是    (注:把满足题意所有函数的序号都填上) 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.