满分5 > 高中数学试题 >

已知三次函数f(x)的导函数f′(x)=3x2-3ax,f(0)=b,a、b为实...

已知三次函数f(x)的导函数f′(x)=3x2-3ax,f(0)=b,a、b为实数.
(1)若曲线y=f(x)在点(a+1,f(a+1))处切线的斜率为12,求a的值;
(2)若f(x)在区间[-1,1]上的最小值、最大值分别为-2、1,且1<a<2,求函数f(x)的解析式.
(1)求出x=a+1处的导数值即切线的斜率,令其为12,列出方程,求出a的值. (2)据导函数的形式设出f(x),求出导函数为0的两个根,判断出根与定义域的关系,求出函数的最值,列出方程求出f(x)的解析式. 【解析】 (1)由导数的几何意义f′(a+1)=12 ∴3(a+1)2-3a(a+1)=12 ∴3a=9∴a=3 (2)∵f′(x)=3x2-3ax,f(0)=b ∴ 由f′(x)=3x(x-a)=0得x1=0,x2=a ∵x∈[-1,1],1<a<2 ∴当x∈[-1,0)时,f′(x)>0,f(x)递增;当x∈(0,1]时,f′(x)<0,f(x)递减. ∴f(x)在区间[-1,1]上的最大值为f(0) ∵f(0)=b, ∴b=1 ∵, ∴f(-1)<f(1) ∴f(-1)是函数f(x)的最小值, ∴ ∴ ∴f(x)=x3-2x2+1
复制答案
考点分析:
相关试题推荐
已知数列manfen5.com 满分网
(I)求数列{an}的通项公式;
(II)设manfen5.com 满分网的前n项和Tn
查看答案
如图,在直三棱柱ABC-A1B1C1中,已知AB=AC,F为BB1上一点,BF=BC=2,FB1=1,D为BC中点,E为线段AD上不同于点A、D的任意一点.
(I)证明:EF⊥FC1
(II)若AB=manfen5.com 满分网,求DF与平面FA1C1所成的角.

manfen5.com 满分网 查看答案
已知f (x)=manfen5.com 满分网sin2x-cos2-manfen5.com 满分网,(x∈R).
(Ⅰ)求函数f(x)的最小值和最小正周期;
(Ⅱ)设△ABC的内角A、B、C的对边分别为a、b、c,且c=manfen5.com 满分网,f (C)=0,若manfen5.com 满分网=(1,sinA)与manfen5.com 满分网=(2,sinB)共线,求a,b的值.
查看答案
A地某单位用三辆客车送职工去B地旅游,从A地到B地有高速公路和一级公路各一条,已知客车走一级公路堵车的概率为manfen5.com 满分网;若1号、2号两辆客车走一级公路,3号客车走高速公路,且三辆客车是否被堵车相互之间没有影响,若三辆客车中恰有一辆被堵车的概率为manfen5.com 满分网
(1)求客车走高速公路被堵车的概率.
(2)求三辆客车中至少有一辆被堵车的概率.
查看答案
以正四面体ABCD各棱中点为顶点的几何体的体积与该正四面体的体积之比为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.