满分5 > 高中数学试题 >

已知P(x,y)为函数y=lnx图象上一点,O为坐标原点.记直线OP的斜率k=f...

已知P(x,y)为函数y=lnx图象上一点,O为坐标原点.记直线OP的斜率k=f(x).
(I)同学甲发现:点P从左向右运动时,f(x)不断增大,试问:他的判断是否正确?若正确,请说明理由:若不正确,请给出你的判断.
(Ⅱ)求证:当x>1时,f(x)manfen5.com 满分网
(III)同学乙发现:总存在正实数a、b(a<b),使ab=ba.试问:他的判断是否正确?若不正确,请说明理由:若正确,请求出a的取值范围.
(I)同学甲的判断不正确.,当x∈(0,e)时,f′(x)>0;当x∈(e,+∞)时,f′(x)<0,故f(x)在(0,e]上递增,在[e,+∞)递减. (Ⅱ)f(x)-=,记,,g(x)在(1,+∞)为减函数,由此能够证明f(x). (III)同学乙的判断正确.,且,,当x→∞时,f(x)→0,由此能求出求出a的取值范围. 【解析】 (I)同学甲的判断不正确. 依题意,f(x)=,, 当x∈(0,e)时,f′(x)>0;当x∈(e,+∞)时,f′(x)<0, ∴f(x)在(0,e]上递增,在[e,+∞)递减. (Ⅱ)f(x)-=, 记, , ∴g(x)在(1,+∞)为减函数, 则g(x)=lnx-, ∴,即f(x). (III)同学乙的判断正确. ∵,且, 又由(2), ∴当x→∞时,f(x)→0, ∴总存在正实数a,b,且1<a<e<b,使得f(a)=f(b),即,∴ab=ba,此时1<a<e.
复制答案
考点分析:
相关试题推荐
已知抛物线x2=2py(p>0)的焦点为F,过F的直线交抛物线于A、B的两点,过A、B两点分别作抛物线的切线,设其交点为M.
(Ⅰ)设A(x1,y1),B(x2,y2),试用x1,x2表示点M的坐标.
(Ⅱ)manfen5.com 满分网是否为定值,如果是,请求出定值,如果不是,请说明理由.
(III)设△ABM的面积为S,试确定S的最小值.
查看答案
各棱长均为2的斜三棱柱ABC-DEF中,已知BF⊥AE,BF∩CE=O,AB=AE,连接AO.
(I)求证:AO⊥平面FEBC.
(II)求二面角B-AC-E的大小.
(III)求三棱锥B-DEF的体积.

manfen5.com 满分网 查看答案
东莞市政府要用三辆汽车从新市政府把工作人员接到老市政府,已知从新市政府到老市政府有两条公路,汽车走公路①堵车的概率为manfen5.com 满分网,不堵车的概率为manfen5.com 满分网;汽车走公路②堵车的概率为p,不堵车的概率为1-p.若甲、乙两辆汽车走公路①,丙汽车由于其他原因走公路②,且三辆车是否堵车相互之间没有影响.
(1)若三辆汽车中恰有一辆汽车被堵的概率为manfen5.com 满分网,求走公路②堵车的概率;
(2)在(1)的条件下,求三辆汽车中被堵车辆的个数ξ的分布列和数学期望.
查看答案
在△ABC中,角A、B、C所对的边分别为a、b、c,且cosA=manfen5.com 满分网
(I)求cos2manfen5.com 满分网+cos2A的值.
(II)若a=2,c=manfen5.com 满分网,求∠C.
查看答案
在平面直角坐标系中,对其中任何一向量X=(x1,x2),定义范数||X||,它满足以下性质:(1)||X||≥0,当且仅当X为零向量时,不等式取等号;(2)对任意的实数λ,||λX||=|λ|•||X||(注:此处点乘号为普通的乘号);(3)||X||+||Y||≥||X+Y||.应用类比的方法,我们可以给出空间直角坐标系下范数的定义,现有空间向量X=(x1,x2,x3),下面给出的几个表达式中,可能表示向量X的范数的是    (把所有正确答案的序号都填上)
(1)manfen5.com 满分网+2x22+x32(2)manfen5.com 满分网 (3)manfen5.com 满分网  (4)manfen5.com 满分网查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.