满分5 > 高中数学试题 >

(1)选修4-2:矩阵与变换 已知二阶矩阵M有特征值λ=3及对应的一个特征向量=...

(1)选修4-2:矩阵与变换
已知二阶矩阵M有特征值λ=3及对应的一个特征向量manfen5.com 满分网=manfen5.com 满分网,并且矩阵M对应的变换将点(-1,2)变换成(3,0),求矩阵M.
(2)选修4-4:坐标系与参数方程
过点M(3,4),倾斜角为manfen5.com 满分网的直线l与圆C:manfen5.com 满分网(θ为参数)相交于A、B两点,试确定|MA|•|MB|的值.
(3)选修4-5:不等式选讲
已知实数a,b,c,d,e满足a+b+c+d+e=8,a2+b2+c2+d2+e2=16,试确定e的最大值.
(1)先设矩阵 ,这里a,b,c,d∈R,由二阶矩阵M有特征值λ=3及对应的一个特征向量e1及矩阵M对应的变换将(-1,2)变换成(3,0),得到关于a,b,c,d的方程组,即可求得矩阵M; (2)先将曲线的参数方程化成普通方程,再将直线的参数方程代入其中,得到一个关于t的二次方程,最后结合参数t的几何意义利用根与系数之间的关系即可求得距离之积. (3)首先分析题目已知a2+b2+c2+d2+e2=16,可以考虑到柯西不等式的应用,建立关于e 的不等关系后,再根据不等式的解法即可. 【解析】 (1)设矩阵 ,这里a,b,c,d∈R, 则 =3 ,故 =,故 联立以上两方程组解得a=1,b=2,c=2,d=1,故M=. (2)由已知得直线l的参数方程为 (t为参数), 即 (t为参数).(3分) 曲线的普通方程为(x-2)2+(y-1)2=25.(6分) 把直线的参数方程代入曲线的普通方程,得 t2+( +3)t-15=0, ∴t1t2=15,(8分) ∴点P到A,B两点的距离之积为15.(10分) (3)由柯西不等式,(a+b+c+d)2≤(12+12+12+12)(a2+b2+c2+d2) 所以得:4(16-e)2≥(8-e)2. 解得:0≤e≤ 不姐仅当a=b=c=d=时,e取最大值.
复制答案
考点分析:
相关试题推荐
已知P(x,y)为函数y=lnx图象上一点,O为坐标原点.记直线OP的斜率k=f(x).
(I)同学甲发现:点P从左向右运动时,f(x)不断增大,试问:他的判断是否正确?若正确,请说明理由:若不正确,请给出你的判断.
(Ⅱ)求证:当x>1时,f(x)manfen5.com 满分网
(III)同学乙发现:总存在正实数a、b(a<b),使ab=ba.试问:他的判断是否正确?若不正确,请说明理由:若正确,请求出a的取值范围.
查看答案
已知抛物线x2=2py(p>0)的焦点为F,过F的直线交抛物线于A、B的两点,过A、B两点分别作抛物线的切线,设其交点为M.
(Ⅰ)设A(x1,y1),B(x2,y2),试用x1,x2表示点M的坐标.
(Ⅱ)manfen5.com 满分网是否为定值,如果是,请求出定值,如果不是,请说明理由.
(III)设△ABM的面积为S,试确定S的最小值.
查看答案
各棱长均为2的斜三棱柱ABC-DEF中,已知BF⊥AE,BF∩CE=O,AB=AE,连接AO.
(I)求证:AO⊥平面FEBC.
(II)求二面角B-AC-E的大小.
(III)求三棱锥B-DEF的体积.

manfen5.com 满分网 查看答案
东莞市政府要用三辆汽车从新市政府把工作人员接到老市政府,已知从新市政府到老市政府有两条公路,汽车走公路①堵车的概率为manfen5.com 满分网,不堵车的概率为manfen5.com 满分网;汽车走公路②堵车的概率为p,不堵车的概率为1-p.若甲、乙两辆汽车走公路①,丙汽车由于其他原因走公路②,且三辆车是否堵车相互之间没有影响.
(1)若三辆汽车中恰有一辆汽车被堵的概率为manfen5.com 满分网,求走公路②堵车的概率;
(2)在(1)的条件下,求三辆汽车中被堵车辆的个数ξ的分布列和数学期望.
查看答案
在△ABC中,角A、B、C所对的边分别为a、b、c,且cosA=manfen5.com 满分网
(I)求cos2manfen5.com 满分网+cos2A的值.
(II)若a=2,c=manfen5.com 满分网,求∠C.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.