满分5 > 高中数学试题 >

已知函数f(x)=exlnx. (1)求函数f(x)的单调区间; (2)设x>0...

已知函数f(x)=exlnx
(1)求函数f(x)的单调区间;
(2)设x>0,求证:f(x+1)>e2x-1
(3)设n∈N*,求证:ln(1×2+1)+ln(2×3+1)+…+ln[n(n+1)+1]>2n-3.
由题意(1)有函数解析式可以先求出函数的定义域,再对函数求导,令导函数大于0解出函数的单调递增区间,令导函数小于0解出函数的减区间; (2)利用分析法分析出要证明的等价的不等式令,由,得出函数等价求解函数在定义域上的最小值即可求得; (3)有(2)得,即,然后把x被k(k+1)代替,即可. 【解析】 (1)定义域为(0,+∞),由f′(x)=exlnx(lnx+1), 令. 故f(x)的增区间:,减区间:, (2)即证: 令,由, 令g′(x)=0,得x=2,且g(x)在(0,2)↓,在(2,+∞)↑,所以g(x)min=g(2)=ln3-1, 故当x>0时,有g(x)≥g(2)=ln3-1>0得证, (3)由(2)得,即, 所以, 则:ln(1×2+1)+ln(2×3+1)+…+ln[(n(n+1)]+1=.
复制答案
考点分析:
相关试题推荐
已知双曲线x2-y2=1的左、右顶点分别为A1、A2,动直线l:y=kx+m与圆x2+y2=1相切,且与双曲线左、右两支的交点分别为P1(x1,y1),P2(x2,y2).
(1)求k的取值范围,并求x2-x1的最小值;
(2)记直线P1A1的斜率为k1,直线P2A2的斜率为k2,那么k1•k2是定值吗?证明你的结论.

manfen5.com 满分网 查看答案
已知数列{an}满足a1=7,an+1=3an+2n-1-8n.(n∈N*
(Ⅰ)李四同学欲求{an}的通项公式,他想,如能找到一个函数f(n)=A•2n-1+B•n+C(A、B、C是常数),把递推关系变成an+1-f(n+1)=3[an-f(n)]后,就容易求出{an}的通项了.请问:他设想的f(n)存在吗?{an}的通项公式是什么?
(Ⅱ)记Sn=a1+a2+a3+…+an,若不等式Sn-2n2>p×3n对任意n∈N*都成立,求实数p的取值范围.
查看答案
manfen5.com 满分网如图,AC是圆O的直径,点B在圆O上,∠BAC=30°,BM⊥AC交AC于点M,EA⊥平面ABC,FC∥EA,AC=4,EA=3,FC=1.
(1)证明:EM⊥BF;
(2)求平面BEF与平面ABC所成的锐二面角的余弦值.
查看答案
甲、乙两人进行围棋比赛,约定每局胜者得1分,负者得0分,比赛进行到有一人比对方多2分或下满6局时停止.设甲在每局中获胜的概率为p(p>manfen5.com 满分网),且各局胜负相互独立.已知第二局比赛结束时比赛停止的概率为manfen5.com 满分网
(1)求p的值;
(2)设ξ表示比赛停止时已比赛的局数,求随机变量ξ的分布列和数学期望Eξ.
查看答案
已知函数manfen5.com 满分网.   
(1)若f(α)=5,求tanα的值;
(2)设△ABC三内角A,B,C所对边分别为a,b,c,且manfen5.com 满分网,求f(x)在(0,B]上的值域.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.