满分5 > 高中数学试题 >

如图,AB为圆O的直径,点E、F在圆O上,AB∥EF,矩形ABCD所在的平面和圆...

manfen5.com 满分网如图,AB为圆O的直径,点E、F在圆O上,AB∥EF,矩形ABCD所在的平面和圆O所在的平面互相垂直,且AB=2,AD=EF=1.
(1)求证:AF⊥平面CBF;
(2)设FC的中点为M,求证:OM∥平面DAF;
(3)设平面CBF将几何体EFABCD分成的两个锥体的体积分别为VF-ABCD,VF-CBE,求VF-ABCD:VF-CBE
(1)可以先由平面ABCD⊥平面ABEF以及CB⊥AB证得CB⊥平面ABEF,⇒AF⊥CB.又因为AB为圆O的直径⇒AF⊥BF,就可证:AF⊥平面CBF; (2)取DF的中点为N,利用MNAO⇒MNAO为平行四边形⇒OM∥AN即可.既用线线平行来证线面平行. (3)先把两个锥体的体积套公式求出来,就可求出其体积之比. 【解析】 (1)证明:由平面ABCD⊥平面ABEF,CB⊥AB, 平面ABCD∩平面ABEF=AB, 得CB⊥平面ABEF, 而AF⊂平面ABEF,所以AF⊥CB(2分) 又因为AB为圆O的直径, 所以AF⊥BF,(3分) 又BF∩CB=B,所以AF⊥平面CBF(4分) (2)证明:设DF的中点为N,连接AN,MN 则MNCD,又AOCD 则MNAO,所以四边形MNAO为平行四边形,(6分) 所以OM∥AN,又AN⊂平面DAF,OM⊄平面DAF, 所以OM∥平面DAF.(8分) (3)过点F作FG⊥AB于G,因为平面ABCD⊥平面ABEF, 所以FG⊥平面ABCD,所以(9分) 因为CB⊥平面ABEF, 所以(11分) 所以VF-ABCD:VF-CBE=4:1.(12分)
复制答案
考点分析:
相关试题推荐
已知函数manfen5.com 满分网.   
(1)若f(α)=5,求tanα的值;
(2)设△ABC三内角A,B,C所对边分别为a,b,c,且manfen5.com 满分网,求f(x)在(0,B]上的值域.
查看答案
manfen5.com 满分网某校从参加高一年级期末考试的学生中抽出60名学生,将其成绩(均为整数)分成六段[40,50),[50,60)…[90,100]后画出如下部分频率分布直方图.观察图形的信息,回答下列问题:
(1)求第四小组的频率,并补全这个频率分布直方图;
(2)估计这次考试的及格率(60分及以上为及格)和平均分.
查看答案
已知{an}是首项为19,公差为-2的等差数列,sn为{an}的前n项和.
(1)求通项an及sn
(2)设{bn-an}是首项为1,公比为3的等比数列,求数列{bn}的通项公式及其前n项和Tn
查看答案
(不等式选讲)若不等式|x-2|+|x+3|<a的解集为∅,则实数a的取值范围为    查看答案
把正整数排列成如图甲三角形数阵,然后擦去第偶数行中的奇数和第奇数行中的偶数,得到如图乙的三角形数阵,再把图乙中的数按从小到大的顺序排成一列,得到一个数列{an},若an=2011,则n=    manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.