满分5 >
高中数学试题 >
命题p:若,则与的夹角为钝角.命题q:定义域为R的函数f(x)在(-∞,0)及(...
命题p:若
,则
与
的夹角为钝角.命题q:定义域为R的函数f(x)在(-∞,0)及(0,+∞)上都是增函数,则f(x)在(-∞,+∞)上是增函数.下列说法正确的是( )
A.“p或q”是真命题
B.“p且q”是假命题
C.
¬p为假命题
D.
¬q为假命题
考点分析:
相关试题推荐
已知集合A={0,1,2,3},集合B={x|x=2a,a∈A},则( )
A.A∩B=A
B.A∩B⊆A
C.A∪B=B
D.A∩B⇐A
查看答案
已知双曲线x
2-y
2=1的左、右顶点分别为A
1、A
2,动直线l:y=kx+m与圆x
2+y
2=1相切,且与双曲线左、右两支的交点分别为P
1(x
1,y
1),P
2(x
2,y
2).
(1)求k的取值范围,并求x
2-x
1的最小值;
(2)记直线P
1A
1的斜率为k
1,直线P
2A
2的斜率为k
2,那么k
1•k
2是定值吗?证明你的结论.
查看答案
已知函数f(x)=xlnx.
(Ⅰ)求f(x)的最小值;
(Ⅱ)若对所有x≥1都有f(x)≥ax-1,求实数a的取值范围.
查看答案
如图,AB为圆O的直径,点E、F在圆O上,AB∥EF,矩形ABCD所在的平面和圆O所在的平面互相垂直,且AB=2,AD=EF=1.
(1)求证:AF⊥平面CBF;
(2)设FC的中点为M,求证:OM∥平面DAF;
(3)设平面CBF将几何体EFABCD分成的两个锥体的体积分别为V
F-ABCD,V
F-CBE,求V
F-ABCD:V
F-CBE.
查看答案
已知函数
.
(1)若f(α)=5,求tanα的值;
(2)设△ABC三内角A,B,C所对边分别为a,b,c,且
,求f(x)在(0,B]上的值域.
查看答案