满分5 > 高中数学试题 >

已知函数.(a为常数,a>0) (Ⅰ)若是函数f(x)的一个极值点,求a的值; ...

已知函数manfen5.com 满分网.(a为常数,a>0)
(Ⅰ)若manfen5.com 满分网是函数f(x)的一个极值点,求a的值;
(Ⅱ)求证:当0<a≤2时,f(x)在manfen5.com 满分网上是增函数;
(Ⅲ)若对任意的a∈(1,2),总存在 manfen5.com 满分网,使不等式f(x)>m(1-a2)成立,求实数m的取值范围.
(Ⅰ)先求出其导函数:,利用是函数f(x)的一个极值点对应的结论f'()=0即可求a的值; (Ⅱ)利用:,在0<a≤2时,分析出因式中的每一项都大于等于0即可证明结论; (Ⅲ)先由(Ⅱ)知,f(x)在上的最大值为,把问题转化为对任意的a∈(1,2),不等式恒成立;然后再利用导函数研究不等式左边的最小值看是否符合要求即可求实数m的取值范围. 【解析】 由题得:. (Ⅰ)由已知,得且,∴a2-a-2=0,∵a>0,∴a=2.(2分) (Ⅱ)当0<a≤2时,∵,∴, ∴当时,.又, ∴f'(x)≥0,故f(x)在上是增函数.(5分) (Ⅲ)a∈(1,2)时,由(Ⅱ)知,f(x)在上的最大值为, 于是问题等价于:对任意的a∈(1,2),不等式恒成立. 记,(1<a<2) 则, 当m=0时,,∴g(a)在区间(1,2)上递减,此时,g(a)<g(1)=0, 由于a2-1>0,∴m≤0时不可能使g(a)>0恒成立, 故必有m>0,∴. 若,可知g(a)在区间上递减,在此区间上,有g(a)<g(1)=0,与g(a)>0恒成立矛盾,故, 这时,g'(a)>0,g(a)在(1,2)上递增,恒有g(a)>g(1)=0,满足题设要求, ∴,即, 所以,实数m的取值范围为.(14分)
复制答案
考点分析:
相关试题推荐
已知数列{an}满足a1=7,an+1=3an+2n-1-8n.(n∈N*
(Ⅰ)李四同学欲求{an}的通项公式,他想,如能找到一个函数f(n)=A•2n-1+B•n+C(A、B、C是常数),把递推关系变成an+1-f(n+1)=3[an-f(n)]后,就容易求出{an}的通项了.请问:他设想的f(n)存在吗?{an}的通项公式是什么?
(Ⅱ)记Sn=a1+a2+a3+…+an,若不等式Sn-2n2>p×3n对任意n∈N*都成立,求实数p的取值范围.
查看答案
已知双曲线x2-y2=1的左、右顶点分别为A1、A2,动直线l:y=kx+m与圆x2+y2=1相切,且与双曲线左、右两支的交点分别为P1(x1,y1),P2(x2,y2).
(1)求k的取值范围,并求x2-x1的最小值;
(2)记直线P1A1的斜率为k1,直线P2A2的斜率为k2,那么k1•k2是定值吗?证明你的结论.

manfen5.com 满分网 查看答案
manfen5.com 满分网在股票市场上,投资者常参考股价(每一股的价格)的某条平滑均线(记作MA)的变化情况来决定买入或卖出股票.股民老王在研究股票的走势图时,发现一只股票的MA均线近期走得很有特点:如果按如图所示的方式建立平面直角坐标系xoy,则股价y(元)和时间x的关系在ABC段可近似地用解析式y=asin(ωx+φ)+b(0<φ<π)来描述,从C点走到今天的D点,是震荡筑底阶段,而今天出现了明显的筑底结束的标志,且D点和C点正好关于直线l:x=34对称.老王预计这只股票未来的走势如图中虚线所示,这里DE段与ABC段关于直线l对称,EF段是股价延续DE段的趋势(规律)走到这波上升行情的最高点F.
现在老王决定取点A(0,22),点B(12,19),点D(44,16)来确定解析式中的常数a,b,ω,φ,并且已经求得manfen5.com 满分网
(1)请你帮老王算出a,b,φ,并回答股价什么时候见顶(即求F点的横坐标);
(2)老王如能在今天以D点处的价格买入该股票5000股,到见顶处F点的价格全部卖出,不计其它费用,这次操作他能赚多少元?
查看答案
已知manfen5.com 满分网(x∈R)是偶函数.
(Ⅰ)求实常数m的值,并给出函数f(x)的单调区间(不要求证明);
(Ⅱ)k为实常数,解关于x的不等式:f(x+k)>f(|3x+1|).
查看答案
在△ABC中,角A、B、C所对的边分别为a、b、c,向量manfen5.com 满分网,且manfen5.com 满分网
(Ⅰ)求sinA的值;  (Ⅱ)若b=2,△ABC的面积为3,求a.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.