满分5 > 高中数学试题 >

若曲线f(x)=x4-x在点P处的切线平行于直线3x-y=0,则点P的坐标为 ....

若曲线f(x)=x4-x在点P处的切线平行于直线3x-y=0,则点P的坐标为   
先设切点坐标,根据导数的几何意义求出函数f(x)在x=m处的导数,根据切线的斜率等于函数f(x)在x=m处的导数建立等式,解之即可. 【解析】 设切点坐标为(m,m4-m) 则f(m)=4m3-1=3 解得:m=1 则点P的坐标为(1,0) 故答案为:(1,0)
复制答案
考点分析:
相关试题推荐
已知manfen5.com 满分网,则cos(π-α)=    查看答案
复数i2(1+i)的虚部是    查看答案
已知函数manfen5.com 满分网.(a为常数,a>0)
(Ⅰ)若manfen5.com 满分网是函数f(x)的一个极值点,求a的值;
(Ⅱ)求证:当0<a≤2时,f(x)在manfen5.com 满分网上是增函数;
(Ⅲ)若对任意的a∈(1,2),总存在 manfen5.com 满分网,使不等式f(x)>m(1-a2)成立,求实数m的取值范围.
查看答案
已知数列{an}满足a1=7,an+1=3an+2n-1-8n.(n∈N*
(Ⅰ)李四同学欲求{an}的通项公式,他想,如能找到一个函数f(n)=A•2n-1+B•n+C(A、B、C是常数),把递推关系变成an+1-f(n+1)=3[an-f(n)]后,就容易求出{an}的通项了.请问:他设想的f(n)存在吗?{an}的通项公式是什么?
(Ⅱ)记Sn=a1+a2+a3+…+an,若不等式Sn-2n2>p×3n对任意n∈N*都成立,求实数p的取值范围.
查看答案
已知双曲线x2-y2=1的左、右顶点分别为A1、A2,动直线l:y=kx+m与圆x2+y2=1相切,且与双曲线左、右两支的交点分别为P1(x1,y1),P2(x2,y2).
(1)求k的取值范围,并求x2-x1的最小值;
(2)记直线P1A1的斜率为k1,直线P2A2的斜率为k2,那么k1•k2是定值吗?证明你的结论.

manfen5.com 满分网 查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.