满分5 > 高中数学试题 >

选修4-1:几何证明选讲 如图,直线AB经过⊙O上的点C,并且OA=OB,CA=...

manfen5.com 满分网选修4-1:几何证明选讲
如图,直线AB经过⊙O上的点C,并且OA=OB,CA=CB,直线OB交⊙O于点E,D,连接EC,CD.
(I)试判断直线AB与⊙O的位置关系,并加以证明;
(Ⅱ)若tanE=manfen5.com 满分网,⊙O的半径为3,求OA的长.
(I)连接OC,由已知的OA与OB相等,CA与CB相等,OC为公共边,得到三角形AOC与三角形BOC全等,进而得到∠OAC与∠OCB相等,都为90°,即OC与AB垂直,故AB与圆O相切; (II) 在直角三角形ACD中,根据直径所对的圆周角等于90°,得到三角形ECD为直角三角形,根据三角函数定义表示出tanE,即可得到CD与EC的比值,根据∠B为公共角,圆的弦切角等于所夹弧所对的圆周角,得到一对角相等,根据两对角相等的两三角形相似,由相似得出比例式,且相似比等于所求的比,设出BD=x,BC=2x,又根据相似得比例表示出BC的平方,把设出的BD和BC代入即可列出关于x的方程,求出方程的解即可得到x的值,即为BD的长,由OA=OB=OD+DB即可求出OA的长. 【解析】 (I)证明:如图,连接OC. ∵OA=OB,CA=CB,OC=OC, ∴△AOC≌△BOC, ∴∠OCA=∠OCB=90°, ∴OC⊥AB. ∴AB是圆O的切线;(3分) (II)由ED为圆O的直径,得到∠ECD=90°, 在直角三角形中, 根据三角函数定义得:tanE==. ∵∠B=∠B,∠BCD=∠E, ∴△BCD∽△BEC, ∴==. 设BD=x,则BC=2x.(6分)又BC2=BD•BE, ∴(2x)2=x(x+6).(8分) 解得x1=0,x2=2. 由BD=x>0,∴BD=2. ∴OA=OB=BD+OD=2+3=5.(12分)
复制答案
考点分析:
相关试题推荐
已知函数f(x)=manfen5.com 满分网x3+manfen5.com 满分网x2-2ax-3.
(Ⅰ)当a=1时,求函数f(x)在[-2,0]上的最小值;
(Ⅱ)求f(x)的单调增区间.
查看答案
已知椭圆的中心在坐标原点O,焦点在x轴上,左焦点为F,左准线与x轴的交点为M,manfen5.com 满分网
(1)求椭圆的离心率e;
(2)过左焦点F且斜率为manfen5.com 满分网的直线与椭圆交于A、B两点,若manfen5.com 满分网,求椭圆的方程.
查看答案
如图所示,在棱长为2的正方体ABCD-A1B1C1D1中,E、F分别为DD1、DB的中点.
(I)求证:EF⊥B1C;
(II)求二面角E-FC-D的正切值;
(III)求三棱锥F-EDC的体积.

manfen5.com 满分网 查看答案
已知在△ABC中,角A,B,C的对边为a,b,c向量manfen5.com 满分网manfen5.com 满分网,且m⊥n.
(I)求角C的大小.
(Ⅱ)若manfen5.com 满分网,求sin(A-B)的值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.