满分5 > 高中数学试题 >

设F1、F2分别是椭圆的左、右焦点. (Ⅰ)若P是该椭圆上的一个动点,求PF1•...

设F1、F2分别是椭圆manfen5.com 满分网的左、右焦点.
(Ⅰ)若P是该椭圆上的一个动点,求PF1•PF2的最大值和最小值;
(Ⅱ)设过定点M(0,2)的直线l与椭圆交于不同的两点A、B,且∠AOB为锐角(其中O为坐标原点),求直线l的斜率k的取值范围.
(Ⅰ)根据题意,求出a,b,c的值,然后设P的坐标,根据PF1•PF2的表达式,按照一元二次函数求最值方法求解. (Ⅱ)设出直线方程,与已知椭圆联立方程组,运用设而不求韦达定理求出根的关系,求出k的取值范围. 【解析】 (Ⅰ)由题意易知 所以, 设P(x,y), 则= 因为x∈[-2,2], 故当x=0,即点P为椭圆短轴端点时, 有最小值-2 当x=±2,即点P为椭圆长轴端点时, 有最大值1 (Ⅱ)显然直线x=0不满足题设条件, 可设直线l:y=kx+2,A(x1,y1),B(x2,y2), 联立,消去y,整理得: ∴ 由得:或, 又 ∴ 又y1y2=(kx1+2)(kx2+2) =k2x1x2+2k(x1+x2)+4 == ∵, 即k2<4∴-2<k<2 故由①、②得: 或.
复制答案
考点分析:
相关试题推荐
某研究性学习小组对昼夜温差与某种子发芽数的关系进行研究.他们分别记录了四天中每天昼夜温差与每天100粒种子浸泡后的发芽数,得到如下资料:
时间第一天第二天第三天第四天
温差(°C)910811
发芽数(粒)33392646
(Ⅰ)求这四天浸泡种子的平均发芽率;
(Ⅱ)若研究的一个项目在这四天中任选2天的种子发芽数来进行,记发芽的种子数分别为m,n(m<n),用(m,n)的形式列出所有的基本事件,并求“m,n满足manfen5.com 满分网”的事件A的概率.
查看答案
已知几何体A-BCDE如图所示,其中四边形BCDE为矩形,且BC=2,manfen5.com 满分网,△ABC是边长为2的等边三角形,平面ABC⊥平面BCDE.
(Ⅰ)若F为边AC上的中点,求证:AE∥平面BDF;
(Ⅱ)求此几何体A-BCDE的体积.

manfen5.com 满分网 查看答案
已知等差数列{an}满足a2=2,a5=8.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设各项均为正数的等比数列{bn}的前n项和为Tn,若b3=a3,T3=7,求Tn
查看答案
已知向量manfen5.com 满分网,sinB),manfen5.com 满分网,cosA),manfen5.com 满分网且A,B,C分别为的三边a,b,c的角.
(Ⅰ)求角C的大小;
(Ⅱ)若sinA,sinC,sinB成等差数列,且manfen5.com 满分网,求边c的长.
查看答案
如图,是网络工作者经常用来解释网络动作的蛇形模型:数1出现在第1行;数2,3出现在第2行;数6,5,4(从左至右)出现在第3行;数7,8,9,10出现在第4行;依此类推,则第63行从左至右算第6个数为   
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.