满分5 > 高中数学试题 >

如图,已知圆,经过椭圆(a>b>0)的右焦点F及上顶点B,过椭圆外一点(m,0)...

manfen5.com 满分网如图,已知圆manfen5.com 满分网,经过椭圆manfen5.com 满分网(a>b>0)的右焦点F及上顶点B,过椭圆外一点(m,0)(m>a)倾斜角为manfen5.com 满分网的直线1交椭圆于C,D两点
(1)求椭圆的方程
(2)若右焦点F在以线段CD为直径的圆E的内部,求m的取值范围.
(1)依据题意可求得F,B的坐标,求得c和b,进而求得a,则椭圆的方程可得. (2)设出直线l的方程,与椭圆方程联立消去,利用判别式大于0求得m的范围,设出C,D的坐标,利用韦达定理表示出x1+x2和 x1x2,进而利用直线方程求得y1y2,表示出和,进而求得•的表达式,利用F在圆E的内部判断出•<0求得m的范围,最后综合可求得md 范围. 【解析】 (1)过点F、B, ∴F(2,0),, 故椭圆的方程为 (2)直线l: 消y得2x2-2mx+(m2-6)=0 由△>0⇒, 又⇒ 设C(x1,y1)、D(x2,y2),则x1+x2=m,,,, ∴ ∵F在圆E的内部,∴, 又⇒.
复制答案
考点分析:
相关试题推荐
已知几何体A-BCD的三视图如图所示,其中俯视图和侧视图都是腰长为4的等腰直角三角形,正视图为直角梯形.
(I )求此几何体的体积V:
(II)若F是AE上的一点,且EF=3FA求证:DF∥平面ABC
(III)试探究在棱DE上是否存在点使得AQ丄CQ,并说明理由.
manfen5.com 满分网
查看答案
袋子A和B中分别装有若干个质地均匀,大小相同的红球和白球,从A中摸出一个球,得到红球的概率是manfen5.com 满分网,从B中摸出一个球,得到红球的概率为p.
(Ⅰ)若A,B两个袋子中的球数之比为1:3,将A,B中的球混装在一起后,从中摸出一个球,得到红球的概率是manfen5.com 满分网,求p的值;
(Ⅱ)从A中有放回地摸球,每次摸出一个,若累计三次摸到红球即停止,最多摸球5次,5次之内(含5次)摸到红球的次数为随机变量ξ,求随机变量ξ的分布列及数学期望.
查看答案
己知在锐角△ABC中,角A、B、C的对边分别为a、b、c,且tanA=manfen5.com 满分网
(I )求角A大小;
(II)当a=manfen5.com 满分网时,求B的取值范围和b2+c2的取值范围.
查看答案
已知定义域为(O,+∞)的函数f(x)满足:①对任意x∈(0,+∞),恒有f(10x)=10f(x),②当x∈(1,10]时,f(x)=x-lgx,②.记区间Ik=(10k,10k+1],其中k∈Z,当x∈Ik(k=0,1,2,3,…)时.f(x)的取值构成区间Dk,定义区间(a,b)的区间长度为b-a,设区间Dk在区间Ik上的补集的区间长度为ak,则a1=    ,ak=    查看答案
在数列{an}.中,如果对任意的n∈N,都有manfen5.com 满分网-manfen5.com 满分网=e(e为常数),则称数列{an}为比等差数列,e称为比公差.现给出下列命题:
①等比数列一定是比等差数列,等差数列不一定是比等差数列;
②如果{an}是等差数列,{bn}是等比数列,那么数列{anbn}是比等差数列:
③斐波那契数列{Fn}不是比等差数列;
④若an=2n-1•(n-1),则数列{an}为比等差数列,比公差e=2.
其中正确命题的序号是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.