满分5 > 高中数学试题 >

预算用2000元购买单价为50元的桌子和20元的椅子,希望使桌椅的总数尽可能的多...

预算用2000元购买单价为50元的桌子和20元的椅子,希望使桌椅的总数尽可能的多,但椅子数不少于桌子数且不多于桌子数的1.5倍,问桌、椅各买多少才行?
本题考查的是线性规划问题.作为应用题应先根据背景设未知数,本题可设购买桌子x张,椅子y张,其总数为z.然后根据信息找出线性约束条件,并画出可行域,然后变形目标函数根据边界直线的斜率与变形目标函数后的直线斜率对比,找到最优解的位置.通过联立边界直线解除最优解,最后根据问答情况下出结论. 【解析】 设购买桌子x张,椅子y张,其总数为z, 根据题意得约束条件为 目标函数为z=x+y,作出可行域 作出直线l:x+y=0将l向右上方平称到l′位置,使l′经过直线y=1.5x与50x+20y≤2000 的交点A,此时z应取得最大值. 解得由问题的实质意义知y应取整数. 又由50x+20y≤2000.得y=37. ∴x=25,y=37是符合条件的最优解 答:应买桌子25张,椅子37张.
复制答案
考点分析:
相关试题推荐
三棱锥P-ABC中,∠BAC=90°,PA=PB=PC=BC=2AB=2,
(1)求证:面PBC⊥面ABC
(2)求二面角B-AP-C的余弦值.

manfen5.com 满分网 查看答案
已知manfen5.com 满分网,其中向量manfen5.com 满分网,(x∈R).
(1) 求f(x)的最小正周期和最小值;
(2) 在△ABC中,角A、B、C的对边分别为a、b、c,若manfen5.com 满分网,a=2manfen5.com 满分网,b=8,求边长c的值.
查看答案
设M=2t+it-1×2t-1+…+i1×2+i,其中ik=0或1(k=0,1,2,…,t-1,t∈N+),并记M=(1it-1it-2…i1i2.对于给定的
x1=(1it-1it-2…i1i2,构造无穷数列{xn}如下:x2=(1iit-1it-2…i2i12,x3=(1i1iit-1…i3i2),x4=(1i2i1iit-1…i32…,
(1)若x1=109,则x3=     (用数字作答);
(2)给定一个正整数m,若x1=22m+2+22m+1+22m+1,则满足xn=x1(n∈N+且n≠1)的n的最小值为    查看答案
已知点A,B,C为同一个球面上三点,AC⊥BC,若球心O到平面ABC的距离为2,直线AO与平面ABC成30°角,则球O的表面积等于    查看答案
如图,在△ABC中,manfen5.com 满分网=manfen5.com 满分网manfen5.com 满分网,P是BN上的一点,若manfen5.com 满分网=mmanfen5.com 满分网+manfen5.com 满分网manfen5.com 满分网,则实数m的值为   
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.