满分5 > 高中数学试题 >

已知椭圆C:的右焦点为F,离心率,椭圆C上的点到F的距离的最大值为,直线l过点F...

已知椭圆C:manfen5.com 满分网的右焦点为F,离心率manfen5.com 满分网,椭圆C上的点到F的距离的最大值为manfen5.com 满分网,直线l过点F与椭圆C交于不同的两点A、B.
(1)求椭圆C的方程;
(2)若manfen5.com 满分网,求直线l的方程.
(1)由题意心率,椭圆C上的点到右焦点F的距离的最大值为,可以建立关于a,b,c的方程解出即可; (2)由题意分设出直线的方程把直线方程与椭圆方程进行联立,利用根与系数的关系及弦长公式求解即可建立方程求得. 【解析】 (1)由题意知,, 所以,从而b=1, 故椭圆C的方程为 (2)容易验证直线l的斜率不为0,故可设直线l的方程为x=my+1,代入中, 得(m2+2)y2+2my-1=0. 设A(x1,y1),B(x2,y2) 则由根与系数的关系,得       ,      =, 解得m=±, 所以直线l的方程为,即或.
复制答案
考点分析:
相关试题推荐
已知{an}为等比数列,a1=1,a5=256;Sn为等差数列{bn}的前n项和,b1=2,5S5=2S8
(1) 求{an}和{bn}的通项公式;
(2) 设Tn=a1b1+a2b2+…anbn,求Tn
查看答案
预算用2000元购买单价为50元的桌子和20元的椅子,希望使桌椅的总数尽可能的多,但椅子数不少于桌子数且不多于桌子数的1.5倍,问桌、椅各买多少才行?
查看答案
三棱锥P-ABC中,∠BAC=90°,PA=PB=PC=BC=2AB=2,
(1)求证:面PBC⊥面ABC
(2)求二面角B-AP-C的余弦值.

manfen5.com 满分网 查看答案
已知manfen5.com 满分网,其中向量manfen5.com 满分网,(x∈R).
(1) 求f(x)的最小正周期和最小值;
(2) 在△ABC中,角A、B、C的对边分别为a、b、c,若manfen5.com 满分网,a=2manfen5.com 满分网,b=8,求边长c的值.
查看答案
设M=2t+it-1×2t-1+…+i1×2+i,其中ik=0或1(k=0,1,2,…,t-1,t∈N+),并记M=(1it-1it-2…i1i2.对于给定的
x1=(1it-1it-2…i1i2,构造无穷数列{xn}如下:x2=(1iit-1it-2…i2i12,x3=(1i1iit-1…i3i2),x4=(1i2i1iit-1…i32…,
(1)若x1=109,则x3=     (用数字作答);
(2)给定一个正整数m,若x1=22m+2+22m+1+22m+1,则满足xn=x1(n∈N+且n≠1)的n的最小值为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.