满分5 > 高中数学试题 >

一个几何体是由圆柱ADD1A1和三棱锥E-ABC组合而成,点A、B、C在圆O的圆...

一个几何体是由圆柱ADD1A1和三棱锥E-ABC组合而成,点A、B、C在圆O的圆周上,其正(主)视图、侧(左)视图的面积分别为10和12,如图2所示,其中EA⊥平面ABC,AB⊥AC,AB=AC,AE=2.
(1)求证:AC⊥BD;
(2)求三棱锥E-BCD的体积.

manfen5.com 满分网
(1)由已知中EA⊥平面ABC,AB⊥AC,结合线面垂直的定义及线面垂直的判定定理,我们易求出AC⊥平面EBD,进而得到答案. (2)要求三棱锥E-BCD的体积,我们有两种办法, 方法一是利用转化思想,将三棱锥E-BCD的体积转化为三棱锥C-EBD的体积,求出棱锥的高和底面面积后,代入棱锥体积公式,进行求解; 方法二是根据VE-BCD=VE-ABC+VD-ABC,将棱锥的体积两个棱次的体积之差,求出两个辅助棱锥的体积后,得到结论. (1)证明:因为EA⊥平面ABC,AC⊂平面ABC,所以EA⊥AC,即ED⊥AC. 又因为AC⊥AB,AB∩ED=A,所以AC⊥平面EBD. 因为BD⊂平面EBD,所以AC⊥BD.(4分) (2)【解析】 因为点A、B、C在圆O的圆周上,且AB⊥AC,所以BC为圆O的直径. 设圆O的半径为r,圆柱高为h,根据正(主)视图、侧(左)视图的面积可得, (6分) 解得 所以BC=4,. 以下给出求三棱锥E-BCD体积的两种方法: 方法1:由(1)知,AC⊥平面EBD, 所以.(10分) 因为EA⊥平面ABC,AB⊂平面ABC, 所以EA⊥AB,即ED⊥AB. 其中ED=EA+DA=2+2=4,因为AB⊥AC,, 所以.(13分) 所以.(14分) 方法2:因为EA⊥平面ABC, 所以.(10分) 其中ED=EA+DA=2+2=4,因为AB⊥AC,, 所以.(13分) 所以.(14分)
复制答案
考点分析:
相关试题推荐
已知等差数列{an}的前n项和为Sn,且S10=55,S20=210.
(1)求数列{an}的通项公式;
(2)设manfen5.com 满分网,是否存在m、k(k>m≥2,k,m∈N*),使得b1、bm、bk成等比数列.若存在,求出所有符合条件的m、k的值;若不存在,请说明理由.
查看答案
如图,渔船甲位于岛屿A的南偏西60°方向的B处,且与岛屿A相距12海里,渔船乙以10海里/小时的速度从岛屿A出发沿正北方向航行,若渔船甲同时从B处出发沿北偏东α的方向追赶渔船乙,刚好用2小时追上.
(1)求渔船甲的速度;
(2)求sinα的值.

manfen5.com 满分网 查看答案
某地区对12岁儿童瞬时记忆能力进行调查.瞬时记忆能力包括听觉记忆能力与视觉记忆能力.某班学生共有40人,下表为该班学生瞬时记忆能力的调查结果.例如表中听觉记忆能力为中等,且视觉记忆能力偏高的学生为3人.
听觉
视觉         
视觉记忆能力
偏低中等偏高超常
听觉
记忆
能力
偏低751
中等183b
偏高2a1
超常211
由于部分数据丢失,只知道从这40位学生中随机抽取一个,视觉记忆能力恰为中等,且听觉记忆能力为中等或中等以上的概率为manfen5.com 满分网
(1)试确定a、b的值;
(2)从40人中任意抽取1人,求此人听觉记忆能力恰为中等,且视觉记忆能力为中等或中等以上的概率.
查看答案
设点A的极坐标为manfen5.com 满分网,直线l过点A且与极轴所成的角为manfen5.com 满分网,则直线l的极坐标方程为    查看答案
在梯形ABCD中,AD∥BC,AD=2,BC=5,点E、F分别在AB、CD上,且EF∥AD,若manfen5.com 满分网,则EF的长为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.