满分5 > 高中数学试题 >

假设某市2004年新建住房面积400万平方米,其中有250万平方米是中低价房,预...

假设某市2004年新建住房面积400万平方米,其中有250万平方米是中低价房,预计在今后的若干年内,该市每年新建住房面积平均比上一年增长8%,另外,每年新建住房中,中低价房的面积均比上一年增加50万平方米,那么,到哪一年底,
(1)该市历年所建中低价层的累计面积(以2004年为累计的第一年)将首次不少于4750万平方米?
(2)当年建造的中低价房的面积占该年建造住房面积的比例首次大于85%?
(1)设中低价房面积形成数列{an},由题意可知{an}是等差数列,求得首项和公差,利用等差数列的求和公式求得Sn,进而根据Sn≥4750,求得n的最小值. (2)设新建住房面积形成数列{bn},由题意可知{bn}是等比数列,根据题意可求得数列的首项和公比,则数列的通项公式可得,进而an>0.85bn,求得n的最小正整数. 【解析】 (1)设中低价房面积形成数列{an},由题意可知{an}是等差数列, 其中a1=250,d=50, 则Sn=250n+=25n2+225n, 令25n2+225n≥4750, 即n2+9n-190≥0,而n是正整数,∴n≥10, ∴到2013年底,该市历年所建中低价房的累计面积将首次不少于4750万平方米. (2)设新建住房面积形成数列{bn},由题意可知{bn}是等比数列, 其中b1=400,q=1.08, 则bn=400•(1.08)n-1, 由题意可知an>0.85bn,有250+(n-1)•50>400•(1.08)n-1•0.85, 由计算器解得满足上述不等式的最小正整数n=6, 到2009年底,当年建造的中低价房的面积占该年建造住房面积的比例首次大于85%.
复制答案
考点分析:
相关试题推荐
已知数列{log2(an-1)}n∈N*)为等差数列,且a1=3,a3=9.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)证明manfen5.com 满分网+manfen5.com 满分网+…+manfen5.com 满分网<1.
查看答案
已知等差数列前三项为a,4,3a,前n项和为Sn,又Sk=2550.
(1)求a及k值;
(2)求manfen5.com 满分网+manfen5.com 满分网+manfen5.com 满分网+…+manfen5.com 满分网
查看答案
数列{an}的前n项和记为Sn,a1=1,an+1=2Sn+1(n≥1)
(1)求{an}的通项公式;
(2)等差数列{bn}的各项为正,其前n项和为Tn,且T3=15,又a1+b1,a2+b2,a3+b3成等比数列,求Tn
查看答案
已知实数列{an}是等比数列,其中a7=1,且a4,a5+1,a6成等差数列.
(1)求数列{an}的通项公式;
(2)数列{an}的前n项和记为Sn,证明:Sn<128(n=1,2,3…).
查看答案
已知各项均为正数的数列{an}的前n项和满足Sn>1,且6Sn=(an+1)(an+2),n∈N*
(Ⅰ)求a1
(Ⅱ)证明{an}是等差数列并求数列的通项公式.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.