(1)选修4-2:矩阵与变换
已知矩阵M=(
)的两^E值分别为λ
1=-1和λ
2=4.
(I)求实数的值;
(II )求直线x-2y-3=0在矩阵M所对应的线性变换作用下的像的方程.
(2)选修4-4:坐标系与参数方程
在直角坐标平面内,以坐标原点O为极点x轴的非负半轴为极轴建立极坐标系.已知曲线C的参数方程为
,
(a为餓),曲线D的鍵标方程为ρsin(θ-
)=-
.
(I )将曲线C的参数方程化为普通方程;
(II)判断曲线c与曲线D的交点个数,并说明理由.
(3)选修4-5:不等式选讲
已知a,b为正实数.
(I)求证:
+
≥a+b;
(II)利用(I)的结论求函数y=
+
(0<x<1)的最小值.
查看答案
已知椭圆E的中心在原点,焦点在x轴上,离心率为
,且过抛物线C:x
2=4y的焦点F.
(I)求椭圆E的方程;
(II)过坐标平面上的点F'作拋物线c的两条切线l
1和l
2,它们分别交拋物线C的另一条切线l
3于A,B两点.
(i)若点F′恰好是点F关于-轴的对称点,且l
3与拋物线c的切点恰好为拋物线的顶点(如图),求证:△ABF′的外接圆过点F;
(ii)试探究:若改变点F′的位置,或切线l
3的位置,或抛物线C的开口大小,(i)中的结论是否仍然成立?由此给出一个使(i)中的结论成立的命题,并加以证明.
查看答案