满分5 > 高中数学试题 >

已知半径为5的圆的圆心在x轴上,圆心的横坐标是整数,且与直线4x+3y-29=0...

已知半径为5的圆的圆心在x轴上,圆心的横坐标是整数,且与直线4x+3y-29=0相切.
(1)求圆的方程;
(2)若直线ax-y+5=0(a≠0)与圆相交于A,B两点,是否存在实数a,使得过点P(-2,4)的直线l垂直平分弦AB?若存在,求出实数a的值;若不存在,请说明理由.
(1)由题意圆心在x轴,且圆心横坐标是整数,设出圆心M的坐标,然后利用点到直线的距离公式表示出圆心到已知直线的距离d,根据直线与圆相切,得到d与半径r相等,列出关于m的不等式,求出不等式的解即可得到m的值,确定出圆心坐标,由圆心坐标和半径写出圆的标准方程即可; (2)假设符合条件的实数a存在,由a不为0,根据两直线垂直时斜率的乘积为-1,由直线ax-y+5=0的斜率表示出直线l方程的斜率,再由P的坐标和表示出的斜率表示出直线l的方程,根据直线l垂直平分弦AB,得到圆心M必然在直线l上,所以把M的坐标代入直线l方程中,得到关于a的方程,求出方程的解即可得到a的值,把求出的a的值代入确定出直线l的方程,经过检验发现直线ax-y+5=0与圆有两个交点,故存在. 【解析】 (1)设圆心为M(m,0)(m∈Z). 由于圆与直线4x+3y-29=0相切,且半径为5, 所以,即|4m-29|=25. 即4m-29=25或4m-29=-25, 解得m=或m=1, 因为m为整数,故m=1, 故所求的圆的方程是(x-1)2+y2=25; (2)设符合条件的实数a存在, ∵a≠0,则直线l的斜率为,l的方程为,即x+ay+2-4a=0. 由于l垂直平分弦AB,故圆心M(1,0)必在l上. 所以1+0+2-4a=0,解得. 经检验时,直线ax-y+5=0与圆有两个交点, 故存在实数,使得过点P(-2,4)的直线l垂直平分弦AB.
复制答案
考点分析:
相关试题推荐
已知函数f(x)=(sinx+cosx)2+cos2x,
(1)求函数f(x)的最小正周期;
(2)当manfen5.com 满分网时,求函数f(x)的最大值,并写出x的相应的取值.
查看答案
如图,在正四棱柱ABCD-A1B1C1D1中,E是DD1的中点.
(1)求证:BD1∥平面ACE;
(2)求证:平面ACE⊥平面B1BDD1

manfen5.com 满分网 查看答案
对于函数f(x)定义域中任意的x1,x2(x1≠x2),有如下结论:
①f(x1+x2)=f(x1)f(x2);②f=f(x1)+f(x2);
③(x1-x2)[f(x1)-f(x2)]<0;④manfen5.com 满分网
当f(x)=2-x时,上述结论中正确结论的序号是    写出全部正确结论的序号) 查看答案
在R上定义运算manfen5.com 满分网.若manfen5.com 满分网,则manfen5.com 满分网的值是    查看答案
函数y=a1-x(a>0,a≠1)的图象恒过定点A,若点A在直线mx+ny-1=0(mn>0)上,则manfen5.com 满分网的最小值为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.