满分5 > 高中数学试题 >

设直线y=x+2与抛物线y=ax2(a>0)相交于A,B两点,M是线段AB的中点...

设直线y=x+2与抛物线y=ax2(a>0)相交于A,B两点,M是线段AB的中点,过点M作x轴的垂线交抛物线于点N.
(Ⅰ)证明:抛物线在N点处的切线与AB平行;
(Ⅱ)是否存在实数a,使得NA⊥NB?若存在,求出a的值;若不存在,请说明理由.
(Ⅰ)将直线的方程y=x+2代入抛物线的方程,消去y得到关于x的一元二次方程,再结合根系数的关系利用导数的几何意义即可求得切线的斜率,从而解决问题抛物线在N点处的切线与AB平行的问题; (Ⅱ)对于存在性问题,可先假设存在,即假设存在实数a,使得NA⊥NB,再利用M是线段AB的中点及AB的长,列出方程求出a值,若出现矛盾,则说明假设不成立,即不存在;否则存在. 【解析】 (Ⅰ)由得ax2-x-2=0. 设A(x1,y1),B(x2,y2),则 由y′=(ax2)′=2ax知,抛物线在N点处的切线的斜率为, 因此,抛物线在点N处的切线与直线AB平行. (Ⅱ)假设存在实数a,使NA⊥NB. 由M是线段AB的中点,∴. 由MN⊥x轴,知, 又,,解得或(舍去). 存在实数,使得NA⊥NB.
复制答案
考点分析:
相关试题推荐
如图,四边形ABCD是边长为1的正方形,MD⊥平面ABCD,NB⊥平面ABCD,且MD=NB=1,E为BC的中点.
(Ⅰ)求异面直线NE与AM所成角的余弦值;
(Ⅱ)在线段AN上是否存在点S,使得ES⊥平面AMN?若存在,求线段AS的长;若不存在,请说明理由.

manfen5.com 满分网 查看答案
某车间甲组有10名工人,其中有4名女工人;乙组有5名工人,其中有3名女工人,现采用分层抽样方法(层内采用不放回简单随机抽样)从甲、乙两组中共抽取3名工人进行技术考核.
(I)求从甲、乙两组各抽取的人数;
(II)求从甲组抽取的工人中恰有1名女工人的概率;
(III)记ξ表示抽取的3名工人中男工人数,求ξ的数学期望.
查看答案
在△ABC中,角A、B、C的对边分别为a、b、c,manfen5.com 满分网
(Ⅰ)求cosC的值;
(Ⅱ)若manfen5.com 满分网,且a+b=9,求c的长.
查看答案
如图,P1(x1,y1),P2(x2,y2),…,Pn(xn,yn)(0<y1<y2<…<yn)是曲线C:y2=3x(y≥0)上的n个点,点Ai(ai,0)(i=1,2,3,…,n)在x轴的正半轴上,且△Ai-1AiPi是正三角形(A是坐标原点).则a1=    ;猜想an关于n的表达式为   
manfen5.com 满分网 查看答案
manfen5.com 满分网=(1,-2),manfen5.com 满分网=(a,-1),manfen5.com 满分网=(-b,0),O为坐标原点,若A、B、C三点共线,则9a+3b的最小值为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.