满分5 > 高中数学试题 >

设全集U={-2,-1,0,1,2},A={-2,-1,0},B={0,1,2}...

设全集U={-2,-1,0,1,2},A={-2,-1,0},B={0,1,2},则(∁UA)∩B=( )
A.{0}
B.{-2,-1}
C.{1,2}
D.{0,1,2}
先根据补集的含义求CUA,再根据交集的含义求(CUA)∩B即可. 【解析】 CUA={1,2},∴(CUA)∩B={1,2} 故选C
复制答案
考点分析:
相关试题推荐
已知数列{an},{bn}满足bn=an+1-an,其中n=1,2,3,….
(Ⅰ)若a1=1,bn=n,求数列{an}的通项公式;
(Ⅱ)若bn+1bn-1=bn(n≥2),且b1=1,b2=2.
(ⅰ)记cn=a6n-1(n≥1),求证:数列{cn}为等差数列;
(ⅱ)若数列manfen5.com 满分网中任意一项的值均未在该数列中重复出现无数次.求a1应满足的条件.
查看答案
已知函数manfen5.com 满分网
(Ⅰ)当m>0时,求函数的单调区间;
(Ⅱ)当m≥1时,曲线C:y=f(x)在点P(0,1)处的切线l与C有且只有一个公共点,求m的取值的集合M.
查看答案
如图,已知椭圆C过点M(2,1),两个焦点分别为manfen5.com 满分网,O为坐标原点,平行于OM的直线l交椭圆C于不同的两点A、B,
(Ⅰ)求椭圆C的方程;
(Ⅱ)试问直线MA、MB的斜率之和是否为定值,若为定值,求出以线段AB为直径且过点M的圆的方程;若不存在,说明理由.

manfen5.com 满分网 查看答案
如图,四棱锥P-ABCD,PA⊥平面ABCD,且PA=4,底面ABCD为直角梯形,∠CDA=∠BAD=90°,AB=2,CD=1,manfen5.com 满分网,M、N分别为PD、PB的中点,平面MCN与PA的交点为Q
(Ⅰ)求PQ的长度;
(Ⅱ)求截面MCN与底面ABCD所成二面角的大小;
(Ⅲ)求四棱锥A-MCNQ的体积.

manfen5.com 满分网 查看答案
庐山是我国四大名山之一,从石门涧可徒步攀登至山顶主景区,沿途风景秀丽,右图是从石门涧上山的旅游示意图,若游客在每一分支处选择哪一条路上山是等可能的(认定游客是始终沿上山路线,不往下走,例到G后不会往E方向走).
(l)茌游客已到达A处的前提下,求经过点F的概率;
(2)在旺季七月份,每天约有1200名游客需由石门涧登山,石门涧景区决定在C、F、G处设售水点,若每位游客在到达C、F、G处条件下买水的概率分别为manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网,则景区每天至少供应多少瓶水是合理的?

manfen5.com 满分网 查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.