满分5 > 高中数学试题 >

设f(x)=x3,等差数列{an}中a3=7,a1+a2+a3=12,记Sn=,...

设f(x)=x3,等差数列{an}中a3=7,a1+a2+a3=12,记Sn=manfen5.com 满分网,令bn=anSn,数列manfen5.com 满分网的前n项和为Tn
(Ⅰ)求{an}的通项公式和Sn
(Ⅱ)求证:manfen5.com 满分网
(Ⅲ)是否存在正整数m,n,且1<m<n,使得T1,Tm,Tn成等比数列?若存在,求出m,n的值,若不存在,说明理由.
(Ⅰ)设出等差数列的公差为d,代入到a3=7和a1+a2+a3=12求出a1和d即可求出数列的通项公式,把通项公式代入到Sn=中并根据f(x)=x3得到sn的通项公式; (Ⅱ)由(Ⅰ)知bn=anSn=(3n-2)(3n+1),所以==(-),得到bn的前n项和Tn=(1-)<得证; (Ⅲ)由(Ⅱ)分别求出T1,Tm和Tn,因为T1,Tm,Tn成等比数列,所以,分别讨论m和n都为正整数且1<m<n即可得到存在并求出此时的m和n的值即可. 【解析】 (Ⅰ)设数列{an}的公差为d,由a3=a1+2d=7,a1+a2+a3=3a1+3d=12. 解得a1=1,d=3∴an=3n-2 ∵f(x)=x3∴Sn==an+1=3n+1. (Ⅱ)bn=anSn=(3n-2)(3n+1) ∴∴ (Ⅲ)由(2)知,∴,∵T1,Tm,Tn成等比数列. ∴即 当m=1时,7=,n=1,不合题意;当m=2时,=,n=16,符合题意; 当m=3时,=,n无正整数解;当m=4时,=,n无正整数解; 当m=5时,=,n无正整数解;当m=6时,=,n无正整数解; 当m≥7时,m2-6m-1=(m-3)2-10>0,则,而, 所以,此时不存在正整数m,n,且1<m<n,使得T1,Tm,Tn成等比数列. 综上,存在正整数m=2,n=16,且1<m<n,使得T1,Tm,Tn成等比数列.
复制答案
考点分析:
相关试题推荐
在平面直角坐标系xOy中,已知以O为圆心的圆与直线l:y=mx+(3-4m),(m∈R)恒有公共点,且要求使圆O的面积最小.
(1)写出圆O的方程;
(2)圆O与x轴相交于A、B两点,圆内动点P使manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网成等比数列,求manfen5.com 满分网的范围;
(3)已知定点Q(-4,3),直线l与圆O交于M、N两点,试判断manfen5.com 满分网是否有最大值,若存在求出最大值,并求出此时直线l的方程,若不存在,给出理由.
查看答案
manfen5.com 满分网如图,AB为圆O的直径,点E、F在圆O上,AB∥EF,矩形ABCD所在的平面和圆O所在的平面互相垂直,且AB=2,AD=EF=1.
(1)求证:AF⊥平面CBF;
(2)设FC的中点为M,求证:OM∥平面DAF;
(3)设平面CBF将几何体EFABCD分成的两个锥体的体积分别为VF-ABCD,VF-CBE,求VF-ABCD:VF-CBE
查看答案
已知关于x的一元二次函数f(x)=ax2-4bx+1.
(1)设集合P={1,2,3}和Q={-1,1,2,3,4},分别从集合P和Q中随机取一个数作为a和b,求函数y=f(x)在区间[1,+∞)上是增函数的概率;
(2)设点(a,b)是区域manfen5.com 满分网内的随机点,求y=f(x)在区间[1,+∞)上是增函数的概率.
查看答案
已知向量manfen5.com 满分网
(I)若manfen5.com 满分网,求COS(manfen5.com 满分网-x)的值;
(II)记manfen5.com 满分网,在△ABC中,角A,B,C的对边分别是a,b,c,且满足(2a-c)cosB=bcosC,求函数f(A)的取值范围.
查看答案
曲边梯形由曲线y=ex,y=0,x=1,x=5所围成,过曲线y=ex,x∈[1,5]上一点P作切线,使得此切线从曲边梯形上切出一个面积最大的普通梯形,这时点P的坐标是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.