已知梯形ABCD中,AD∥BC,∠ABC=∠BAD=
,AB=BC=2AD=4,E、F分别是AB、CD上的点,EF∥BC,AE=x,G是BC的中点.沿EF将梯形ABCD翻折,使平面AEFD⊥平面EBCF (如图).
(1)当x=2时,求证:BD⊥EG;
(2)若以F、B、C、D为顶点的三棱锥的体积记为f(x),求f(x)的最大值;
(3)当f(x)取得最大值时,求二面角D-BF-C的余弦值.
考点分析:
相关试题推荐
有红色和黑色两个盒子,红色盒中有6张卡片,其中一张标有数字0,两张标有数字1,三张标有数字2;黑色盒中有7张卡片,其中4张标有数字0,一张标有数字1,两张标有数字2.现从红色盒中任意取1张卡片(每张卡片被抽出的可能性相等),黑色盒中任意取2张卡片(每张卡片抽出的可能性相等),共取3张卡片.
(Ⅰ)求取出的3张卡片都标有数字0的概率;
(Ⅱ)求取出的3张卡片数字之积是4的概率;
(Ⅲ)记ξ为取出的3张卡片的数字之积,求ξ的概率分布及数学期望Eξ.
查看答案
已知函数
.
(1)设x=x
是函数y=f(x)的图象的一条对称轴,求g(2x
)的值;
(2)求函数h(x)=f(x)+g(x),
的值域.
查看答案
在△ABC中,B(-2,0),C(2,0),A(x,y),给出△ABC满足的条件,就能得到动点A的轨迹方程,下表给出了一些条件及方程:
则满足条件①、②、③的轨迹方程分别为
(用代号C
1、C
2、C
3填入).
条 件 | 方 程 |
①△ABC的周长为10 | C1:y2=25 |
②△ABC的面积为10 | C2:x2+y2=4(y≠0) |
③△ABC中,∠A=90° | C3: |
查看答案
设
是平面内的四个单位向量,其中
与
的夹角为135°,对这个平面内的任一个向量
,规定经过一次“斜二测变换”得到向量
,设向量
,则经过一次“斜二测变换”得到向量
的模
是
.
查看答案
设x,y是满足5x+12y=60,则(x-3)
2+(y-3)
2的最小值是
.
查看答案