满分5 > 高中数学试题 >

已知数列{an}是等差数列,且a1=2,a1+a2+a3=12. (1)求数列{...

已知数列{an}是等差数列,且a1=2,a1+a2+a3=12.
(1)求数列{an}的通项公式;
(2)令bn=anxn(x∈R),求数列{bn}前n项和的公式.
(1)本题是一个数列的基本量的运算,根据题目所给的首项和前连续三项的值,写出关于公差的方程,解方程可得结果. (2)构造一个新数列,观察这个数列是有一个等差数列和一个等比数列的积构成的,这种结构要用错位相减法求的结果,解题时注意等比数列的公比与1的关系,进行讨论. 【解析】 (1)设数列{an}的公差为d, 则a1+a2+a3=3a1+3d=12. 又a1=2,得d=2. ∴an=2n. (2)当x=0时,bn=0,Sn=0, 当x≠0时,令Sn=b1+b2+…+bn, 则由bn=anxn=2nxn,得 Sn=2x+4x2++(2n-2)xn-1+2nxn,① xSn=2x2+4x3++(2n-2)xn+2nxn+1.② 当x≠1时,①式减去②式,得 (1-x)Sn=2(x+x2++xn)-2nxn+1 =-2nxn+1. ∴Sn=-. 当x=1时,Sn=2+4++2n=n(n+1). 综上可得,当x=1时,Sn=n(n+1); 当x≠1时,Sn=-.
复制答案
考点分析:
相关试题推荐
设函数f(x)=msinx+cosx(x∈R)的图象经过点manfen5.com 满分网
(Ⅰ)求y=f(x)的解析式,并求函数的最小正周期和单调递增区间
(Ⅱ)若manfen5.com 满分网,其中A是面积为manfen5.com 满分网的锐角△ABC的内角,且AB=2,求AC和BC的长.
查看答案
设函数f(x)=x2-ax+a+3,g(x)=ax-2a.若存在x∈R,使得f(x)<0与g(x)<0同时成立,则实数a的取值范围是    查看答案
一只布袋中有同样的球5个,其中3个红色,2个黄色,现从中随机且不返回地摸球,每次摸1个,当两种颜色的球都被摸到时,即停止摸球,记随机变量ξ为此时已摸球的次数,分布列如下表所示,已知ξ的期望manfen5.com 满分网,则a-b=   
manfen5.com 满分网 查看答案
已知ABC的三边长为a,b,c,内切圆半径为r(用S△ABC表示△ABC的面积),则S△ABC=manfen5.com 满分网r(a+b+c);类比这一结论有:若三棱锥A-BCD的内切球半径为R,则三棱锥体积VA-BCD=    查看答案
若平面向量manfen5.com 满分网满足manfen5.com 满分网manfen5.com 满分网,则manfen5.com 满分网的取值范围为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.