满分5 > 高中数学试题 >

如图,已知椭圆的中心在原点,焦点在x轴上,长轴长是短轴长的2倍且经过点M(2,1...

manfen5.com 满分网如图,已知椭圆的中心在原点,焦点在x轴上,长轴长是短轴长的2倍且经过点M(2,1),平行于OM的直线l在y轴上的截距为m(m≠0),l交椭圆于A、B两个不同点.
(1)求椭圆的方程;
(2)求m的取值范围;
(3)求证直线MA、MB与x轴始终围成一个等腰三角形.
(1)设出椭圆的标准方程,长轴长是短轴长的2倍求得a和b的关系,进而把点M代入椭圆方程求得a和b的另一个关系式,然后联立求得a和b,则椭圆的方程可得. (2)依题意可表示出直线l的方程,与椭圆方程联立消去y,根据判别式大于0求得m的取值范围. (3)设直线MA、MB的斜率分别为k1,k2,问题转化为证明k1+k2=0.设出点A,B的坐标,进而表示出两斜率,根据(2)中的方程式,根据韦达定理表示出x1+x2和x1x2,进而代入到k1+k2,化简整理求得结果为0,原式得证. 【解析】 (1)设椭圆方程为 则,解得 ∴椭圆方程 (2)∵直线l平行于OM,且在y轴上的截距为m 又 ∴l的方程为: 由,∴x2+2mx+2m2-4=0 ∵直线l与椭圆交于A、B两个不同点,∴△=(2m)2-4(2m2-4)>0, ∴m的取值范围是{m|-2<m<2且m≠0} (3)设直线MA、MB的斜率分别为k1,k2,只需证明k1+k2=0即可 设 由x2+2mx+2m2-4=0可得x1+x2=-2m,x1x2=2m2-4 而= = = = ∴k1+k2=0 故直线MA、MB与x轴始终围成一个等腰三角形.
复制答案
考点分析:
相关试题推荐
已知梯形ABCD中,AD∥BC,∠ABC=∠BAD=manfen5.com 满分网,AB=BC=2AD=4,E、F分别是AB、CD上的点,EF∥BC,AE=x,G是BC的中点.沿EF将梯形ABCD翻折,使平面AEFD⊥平面EBCF (如图).
(1)当x=2时,求证:BD⊥EG;
(2)若以F、B、C、D为顶点的三棱锥的体积记为f(x),求f(x)的最大值;
(3)当f(x)取得最大值时,求二面角D-BF-C的余弦值.

manfen5.com 满分网 manfen5.com 满分网 查看答案
已知数列{an}是等差数列,且a1=2,a1+a2+a3=12.
(1)求数列{an}的通项公式;
(2)令bn=anxn(x∈R),求数列{bn}前n项和的公式.
查看答案
设函数f(x)=msinx+cosx(x∈R)的图象经过点manfen5.com 满分网
(Ⅰ)求y=f(x)的解析式,并求函数的最小正周期和单调递增区间
(Ⅱ)若manfen5.com 满分网,其中A是面积为manfen5.com 满分网的锐角△ABC的内角,且AB=2,求AC和BC的长.
查看答案
设函数f(x)=x2-ax+a+3,g(x)=ax-2a.若存在x∈R,使得f(x)<0与g(x)<0同时成立,则实数a的取值范围是    查看答案
一只布袋中有同样的球5个,其中3个红色,2个黄色,现从中随机且不返回地摸球,每次摸1个,当两种颜色的球都被摸到时,即停止摸球,记随机变量ξ为此时已摸球的次数,分布列如下表所示,已知ξ的期望manfen5.com 满分网,则a-b=   
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.