满分5 > 高中数学试题 >

如图,已知正三棱柱ABC-A1B1C1的底面边长是2,D是侧棱CC1的中点,直线...

如图,已知正三棱柱ABC-A1B1C1的底面边长是2,D是侧棱CC1的中点,直线AD与侧面BB1C1C所成的角为45°.
(Ⅰ)求此正三棱柱的侧棱长;
(Ⅱ)求二面角A-BD-C的大小;
(Ⅲ)求点C到平面ABD的距离.

manfen5.com 满分网
(1)由直线AD与侧面BB1C1C所成的角为45°,我们要求正三棱柱的侧棱长,关键是要找出AD在侧面BB1C1C上的射影,然后求出A点到侧面BB1C1C的距离,分析易得△ABC中BC边的中线AE,即为A点到侧面BB1C1C的距离,求出AE后,我们易求出AD的长,解三角形ACD可求出CD的长,然后根据D为侧棱CC1的中点,进而可以求出三棱柱的侧棱长; (2)过E作EF⊥BD于F,连接AF后,我们结合(1)的结论可得EF即为AF在侧面BB1C1C上的射影,由三垂线定理,我们易得∠AFE为二面角A-BD-C的平面角,解三角形AEF后,即可求解; (3)由(Ⅱ)可知,BD⊥平面AEF,则平面AEF⊥平面ABD,且交线为AF,过E作EG⊥AF于G,则EG⊥平面ABD.EG的长为点E到平面ABD的距离.解三角形AEF可以求出EG的长,进而得到点C到平面ABD的距离. 【解析】 (Ⅰ)设正三棱柱ABC-A1B1C1的侧棱长为x.取BC中点E,连接AE. ∵△ABC是正三角形, ∴AE⊥BC. 又底面ABC⊥侧面BB1C1C, 且两平面交线为BC, ∴AE⊥侧面BB1C1C. 连接ED,则∠ADE为直线AD与侧面BB1C1C所成的角. ∴∠ADE=45°. 在Rt△AED中,,解得. ∴此正三棱柱的侧棱长为. (Ⅱ)过E作EF⊥BD于F,连接AF. ∵AE⊥侧面BB1C1C,∴EF是AF在平面BCD内的射影. 由三垂线定理,可知AF⊥BD. ∴∠AFE为二面角A-BD-C的平面角. 在Rt△BEF中,EF=BEsin∠EBF,又BE=1, , ∴. 又, ∴在Rt△AEF中,. 故二面角A-BD-C的大小为arctan3. (Ⅲ)由(Ⅱ)可知,BD⊥平面AEF, ∴平面AEF⊥平面ABD,且交线为AF, 过E作EG⊥AF于G,则EG⊥平面ABD. ∴EG的长为点E到平面ABD的距离. 在Rt△AEF中,. ∵E为BC中点,∴点C到平面ABD的距离为.
复制答案
考点分析:
相关试题推荐
已知:函数f(x)=ax+manfen5.com 满分网+c(a、b、c是常数)是奇函数,且满足f(1)=manfen5.com 满分网,f(2)=manfen5.com 满分网
(Ⅰ)求a、b、c的值;
(Ⅱ)试判断函数f(x)在区间(0,manfen5.com 满分网)上的单调性并说明理由;
(Ⅲ)试求函数f(x)在区间(0,+∞)上的最小值.
查看答案
一种电脑屏幕保护画面,只有符号“○”和“×”随机地反复出现,每秒钟变化一次,每次变化只出现“○”和“×”之一,其中出现“○”的概率为p,出现“×”的概率为q,若第k次出现“○”,则记ak=1;出现“×”,则记ak=-1,令Sn=a1+a2+••+an
(I)当p=q=manfen5.com 满分网时,记ξ=|S3|,求ξ的分布列及数学期望;
(II)当p=manfen5.com 满分网,q=manfen5.com 满分网时,求S8=2且Si≥0(i=1,2,3,4)的概率.
查看答案
已知:tan(α+manfen5.com 满分网)=-manfen5.com 满分网,(manfen5.com 满分网<α<π).
(1)求tanα的值;
(2)求manfen5.com 满分网的值.
查看答案
manfen5.com 满分网已知圆O的半径为3,从圆O外一点A引切线AD和割线ABC,圆心O到AC的距离为2manfen5.com 满分网,AB=3,则切线AD的长为    查看答案
(坐标系与参数方程选做题) 极坐标方程ρ=2manfen5.com 满分网sin(θ+manfen5.com 满分网)所表示的曲线的直角坐标方程是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.