满分5 > 高中数学试题 >

已知梯形ABCD中,AD∥BC,∠ABC=∠BAD=,AB=BC=2AD=4,E...

已知梯形ABCD中,AD∥BC,∠ABC=∠BAD=manfen5.com 满分网,AB=BC=2AD=4,E、F分别是AB、CD上的点,EF∥BC,AE=x,G是BC的中点.沿EF将梯形ABCD翻折,使平面AEFD⊥平面EBCF (如图).
(1)当x=2时,求证:BD⊥EG;
(2)若以F、B、C、D为顶点的三棱锥的体积记为f(x),求f(x)的最大值;
(3)当f(x)取得最大值时,求二面角D-BF-C的余弦值.

manfen5.com 满分网 manfen5.com 满分网
(1)由AEFD⊥平面EBCF,EF∥BC∥AD,可得AE⊥EF,进而由面面垂直的性质定理得到AE⊥平面EBCF,进而建立空间坐标系E-xyz,求出BD,EG的方向向量,根据两个向量的数量积为0,即可证得BD⊥EG; (2)根据等体积法,我们可得f(x)=VD-BCF=VA-BFC的解析式,根据二次函数的性质,易求出f(x)有最大值; (3)根据(2)的结论,我们求出平面BDF和平面BCF的法向量,代入向量夹角公式即可得到二面角D-BF-C的余弦值. 证明:(1)∵平面AEFD⊥平面EBCF,∵, ∴AE⊥EF,∴AE⊥平面EBCF,AE⊥EF,AE⊥BE, 又BE⊥EF,故可如图建立空间坐标系E-xyz. ∵EA=2,∴EB=2, 又∵G为BC的中点,BC=4,∴BG=2. 则A(0,0,2),B(2,0,0),G(2,2,0),D(0,2,2),E(0,0,0), ∴=(-2,2,2),=(2,2,0),=(-2,2,2)•(2,2,0)=0, ∴BD⊥EG. 【解析】 (2)∵AD∥面BFC, 所以f(x)=VD-BCF=VA-BFC===, 即x=2时f(x)有最大值为.(8分) (3)设平面DBF的法向量为, ∵AE=2,B(2,0,0),D(0,2,2), F(0,3,0),∴,=(-2,2,2), 则, 即, 取x=3,y=2,z=1, ∴ ∵AE⊥面BCF, ∴面BCF一个法向量为, 则cos<>=,(14分) 由于所求二面角D-BF-C的平面角为钝角,所以此二面角的余弦值为-.
复制答案
考点分析:
相关试题推荐
a2,a5是方程x2-12x+27=0的两根,数列{an}是公差为正的等差数列,数列{bn}的前n项和为Tn,且Tn=1-manfen5.com 满分网bn(n∈N*).
(1)求数列{an},{bn}的通项公式;  
(2)记cn=anbn,求数列{cn}的前n项和Sn
查看答案
某商场为吸引顾客消费推出一项优惠活动.活动规则如下:消费额每满100元可转动如图所示的转盘一次,并获得相应金额的返券,假定指针等可能地停在任一位置.若指针停在A区域返券60元;停在B区域返券30元;停在C区域不返券.例如:消费218元,可转动转盘2次,所获得的返券金额是两次金额之和.
(Ⅰ)若某位顾客消费128元,求返券金额不低于30元的概率;
(Ⅱ)若某位顾客恰好消费280元,并按规则参与了活动,他获得返券的金额记为X(元).求随机变量X的分布列和数学期望.

manfen5.com 满分网 查看答案
manfen5.com 满分网已知函数f(x)=Asin(wx+φ),(A>0,w>0,|φ|<manfen5.com 满分网,x∈R)的图象的一部分如图所示.
(1)求函数f(x)的解析式;
(2)当x∈[-6,manfen5.com 满分网]时,求函数y=f(x)+f(x+2)的最大值与最小值及相应的x的值.
查看答案
如图,点B在⊙O上,M为直径AC上一点,BM的延长线交⊙O于N,∠BNA=45°,若⊙O的半径为2manfen5.com 满分网,OA=manfen5.com 满分网OM,则MN的长为   
manfen5.com 满分网 查看答案
在极坐标系中,点(1,0)到直线ρ(cosθ+sinθ)=2的距离为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.