满分5 > 高中数学试题 >

设x1,x2是函数的两个极值点,且|x1|+|x2|=2. (1)求a与b的关系...

设x1,x2是函数manfen5.com 满分网的两个极值点,且|x1|+|x2|=2.
(1)求a与b的关系式;
(2)令函数manfen5.com 满分网,求函数g(a)的值域.
(1)求出f′(x),因为x1,x2是函数的两个极值点,所以x1,x2是f′(x)=0的两个实数根,根据a大于0,利用韦达定理得到两根之积小于0即两根异号,且表示出|x1|+|x2|,根据其值等于2列出a与b的关系式即可; (2)从(1)中a与b的关系式中找出a的取值范围即为g(a)的定义域,求出g′(a)=0时a的值,利用a的值在定义域范围中,讨论g′(a)的符号得到g(a)的单调区间,利用g(a)的增减性即可得到g(a)的最值,即可得到g(a)的值域. 【解析】 (1)f′(x)=ax2+bx-a2 ∵x1,x2是函数f(x)的两个极值点, ∴x1,x2是方程f′(x)=ax2+bx-a2=0的两个实数根. ∵a>0,x1x2=-a<0,x1+x2=-, ∴|x1|+|x2|=|x1-x2|== ∵|x1|+|x2|=2, ∴=2即a与b的关系式为b2-4a2+4a3=0; (2)由(1)知b2-4a2+4a3=0,即b2=4a2-4a3≥0,∴0<a≤1 ∴函数g(a)的定义域为(0,1] g′(a)=a2-a+1=(a-)(a-2) ∴a=是函数g(a)的极值点 ∴a,g′(a),g(a)的变化如下: ∴g(1)≤g(a)≤g()即≤g(a)≤ ∴g(a)的值域为[,]
复制答案
考点分析:
相关试题推荐
双曲线C与椭圆manfen5.com 满分网有相同的焦点,直线manfen5.com 满分网为C的一条渐近线.
(1)求双曲线C的方程;
(2)过点P(0,4)的直线l,交双曲线C于A、B两点,交x轴于Q点(Q点与C的顶点不重合),当manfen5.com 满分网,且manfen5.com 满分网时,求Q点的坐标.
查看答案
已知梯形ABCD中,AD∥BC,∠ABC=∠BAD=manfen5.com 满分网,AB=BC=2AD=4,E、F分别是AB、CD上的点,EF∥BC,AE=x,G是BC的中点.沿EF将梯形ABCD翻折,使平面AEFD⊥平面EBCF (如图).
(1)当x=2时,求证:BD⊥EG;
(2)若以F、B、C、D为顶点的三棱锥的体积记为f(x),求f(x)的最大值;
(3)当f(x)取得最大值时,求二面角D-BF-C的余弦值.

manfen5.com 满分网 manfen5.com 满分网 查看答案
某社区举办2010年上海世博会知识宣传活动,进行现场抽奖,抽奖规则是:盒中装有10张大小相同的精美卡片,卡片上分别印有“世博会会徽”或“海宝”(世博会吉祥物)图案,参加者每次从盒中抽取卡片两张,若抽到的两张都是“海宝”卡即可获奖.
(1)活动开始后,一位参加者问:“盒中有几张‘海宝’卡?”,主持人笑说:“我只知道从盒中任抽两张都不是‘海宝’卡的概率是manfen5.com 满分网”,求抽奖都获奖的概率;
(2)在(1)的条件下,现在甲、乙、丙、丁四人依次抽奖,抽后放回,另一个人再抽,求至多有一人获奖的概率.
查看答案
已知函数manfen5.com 满分网
(1)设x=x是函数y=f(x)的图象的一条对称轴,求g(2x)的值;
(2)求函数h(x)=f(x)+g(x),manfen5.com 满分网的值域.
查看答案
在△ABC中,B(-2,0),C(2,0),A(x,y),给出△ABC满足的条件,就能得到动点A的轨迹方程,下表给出了一些条件及方程:
则满足条件①、②、③的轨迹方程分别为    (用代号C1、C2、C3填入).
条  件方  程
①△ABC的周长为10C1:y2=25
②△ABC的面积为10C2:x2+y2=4(y≠0)
③△ABC中,∠A=90°C3manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.