满分5 > 高中数学试题 >

如图,△ABC的角平分线AD的延长线交它的外接圆于点E. (1)证明:△ABE∽...

如图,△ABC的角平分线AD的延长线交它的外接圆于点E.
(1)证明:△ABE∽△ADC;
(2)若△ABC的面积S=manfen5.com 满分网AD•AE,求∠BAC的大小.

manfen5.com 满分网
(1)要判断两个三角形相似,可以根据三角形相似判定定理进行证明,但注意观察已知条件中给出的是角的关系,故采用判定定理1更合适,故需要再找到一组对应角相等,由圆周角定理,易得满足条件的角. (2)根据(1)的结论,我们可得三角形对应对成比例,由此我们可以将△ABC的面积转化为S=AB•AC,再结合三角形面积公式,不难得到∠BAC的大小. 证明:(1)由已知△ABC的角平分线为AD, 可得∠BAE=∠CAD 因为∠AEB与∠ACB是同弧上的圆周角, 所以∠AEB=∠ACD 故△ABE∽△ADC. 【解析】 (2)因为△ABE∽△ADC, 所以, 即AB•AC=AD•AE. 又S=AB•ACsin∠BAC, 且S=AD•AE, 故AB•ACsin∠BAC=AD•AE. 则sin∠BAC=1, 又∠BAC为三角形内角, 所以∠BAC=90°.
复制答案
考点分析:
相关试题推荐
如图,某小区准备绿化一块直径为BC的半圆形空地,△ABC的内接正方形PQRS为一水池,△ABC外的地方种草,其余地方种花.若BC=a,∠ABC=θ,设△ABC的面积为S1,正方形PQRS的面积为S2,将比值manfen5.com 满分网称为“规划合理度”.
(1)试用a,θ表示S1和S2
(2)若a为定值,当θ为何值时,“规划合理度”最小?并求出这个最小值.

manfen5.com 满分网 查看答案
已知棱长为1的正方体AC1,E,F分别是B1 C1和C1D1的中点
(1)求点A1到平面BDFE的距离
(2)求直线A1D与平面BDFE所成的角.

manfen5.com 满分网 查看答案
在数列manfen5.com 满分网
(1)求证:数列{bn}是等差数列,并求数列{an}的通项公式an
(2)设manfen5.com 满分网,数列{cncn+2}的前n项和为Tn,是否存在正整整m,使得manfen5.com 满分网对于n∈N*恒成立,若存在,求出m的最小值,若不存在,说明理由.
查看答案
已知A、B、C为△ABC的三内角,且其对边分别为a、b、c,若manfen5.com 满分网manfen5.com 满分网,且manfen5.com 满分网

(1)求角A的值;

(2)若a=manfen5.com 满分网,b+c=4,求△ABC的面积.
查看答案
如图,矩形ABCD,PA⊥平面ABCD,M、N、R分别是AB、PC、CD的中点.
①求证:直线AR∥平面PMC;
②求证:直线MN⊥直线AB.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.