满分5 > 高中数学试题 >

已知f(x)=ax-ln(-x),x∈(-e,0),,其中e是自然常数,a∈R....

已知f(x)=ax-ln(-x),x∈(-e,0),manfen5.com 满分网,其中e是自然常数,a∈R.
(1)讨论a=-1时,f(x)的单调性、极值;
(2)求证:在(1)的条件下,manfen5.com 满分网
(3)是否存在实数a,使f(x)的最小值是3,如果存在,求出a的值;如果不存在,说明理由.
(1)把a=-1代入f(x)=ax-ln(-x),求导,分析导函数的符号,可得f(x)的单调性、极值; (2)由(1)知f(x)在[-e,0)的最小值为1,要证,只需证的最大值小于1即可,利用导数求函数的最大值; (3))假设存在实数a,使f(x)=ax-ln(-x)有最小值3,x∈[-e,0),求导,令导数等于零,解方程得到的方程的根是否在定义域(-e,0)内进行讨论,从而求得结果. 【解析】 (1)∵f(x)=-x-ln(-x) ∴当-e≤x<-1时,f′(x)<0,此时f(x)为单调递减 当-1<x<0时,f'(x)>0,此时f(x)为单调递增 ∴f(x)的极小值为f(-1)=1 (2)∵f(x)的极小值,即f(x)在[-e,0)的最小值为1 ∴|f(x)|min=1 令 又∵ 当-e≤x<0时h′(x)≤0,h(x)在[-e,0)上单调递减 ∴ ∴当x∈[-e,0)时, (3)假设存在实数a,使f(x)=ax-ln(-x)有最小值3,x∈[-e,0) ①当时,由于x∈[-e,0),则 ∴函数f(x)=ax-ln(-x)是[-e,0)上的增函数 ∴f(x)min=f(-e)=-ae-1=3 解得(舍去) ②当时,则当时, 此时f(x)=ax-ln(-x)是减函数 当时,,此时f(x)=ax-ln(-x)是增函数 ∴ 解得a=-e2
复制答案
考点分析:
相关试题推荐
定义:若数列{An}满足An+1=An2,则称数列{An}为“平方递推数列”.已知数列{an}中,a1=2,且an+1=2an2+2an,其中n为正整数.
(1)设bn=2an+1,证明:数列{bn}是“平方递推数列”,且数列{lgbn}为等比数列;
(2)设(1)中“平方递推数列”{bn}的前n项之积为Tn,即Tn=(2a1+1)(2a2+1)…(2an+1),求数列{an}的通项及Tn关于n的表达式;
(3)记cn=manfen5.com 满分网,求数列{cn}的前n项之和Sn,并求使Sn>2008的n的最小值.
查看答案
在△ABC中,已知A(0,a),B(0,-a),AC,CB两边所在的直线分别与x轴交于原点同侧的点M,N,且满足|OM|•|ON|=4a2(a为不等于零的常数)
(1)求点C的轨迹方程;
(2)如果存在直线l:y=kx-1(k≠0),使l与点C的轨迹相交于不同的P,Q两点,且|AP|=|AQ|,求a的取值范围.
查看答案
manfen5.com 满分网如图,公园有一块边长为2的等边△ABC的边角地,现修成草坪,图中DE把草坪分成面积相等的两部分,D在AB上,E在AC上.
(1)设AD=x(x≥0),ED=y,求用x表示y的函数关系式;
(2)如果DE是灌溉水管,为节约成本,希望它最短,DE的位置应在哪里?如果DE是参观线路,则希望它最长,DE的位置又应在哪里?请予证明.
查看答案
已知向量manfen5.com 满分网=(3sin α,cos α),manfen5.com 满分网=(2sin α,5sin α-4cos α),α∈manfen5.com 满分网,且manfen5.com 满分网
(1)求tan α的值;
(2)求cosmanfen5.com 满分网的值.
查看答案
manfen5.com 满分网如图,正三棱柱ABC-A1B1C1中,AB=2,AA1=1,D是BC的中点,点P在平面BCC1B1内,PB1=PC1=manfen5.com 满分网
(Ⅰ)求证:PA1⊥BC;
(Ⅱ)求证:PB1∥平面AC1D.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.