满分5 > 高中数学试题 >

在平面直角坐标系xoy中,直线l与抛物线y2=4x相交于不同的A、B两点. (Ⅰ...

在平面直角坐标系xoy中,直线l与抛物线y2=4x相交于不同的A、B两点.
(Ⅰ)如果直线l过抛物线的焦点,求manfen5.com 满分网的值;
(Ⅱ)如果manfen5.com 满分网=-4,证明直线l必过一定点,并求出该定点.
(Ⅰ)根据抛物线的方程得到焦点的坐标,设出直线与抛物线的两个交点和直线方程,是直线的方程与抛物线方程联立,得到关于y的一元二次方程,根据根与系数的关系,表达出两个向量的数量积. (Ⅱ)设出直线的方程,同抛物线方程联立,得到关于y的一元二次方程,根据根与系数的关系表示出数量积,根据数量积等于-4,做出数量积表示式中的b的值,即得到定点的坐标. 【解析】 (Ⅰ)由题意:抛物线焦点为(1,0) 设l:x=ty+1代入抛物线y2=4x消去x得, y2-4ty-4=0,设A(x1,y1),B(x2,y2) 则y1+y2=4t,y1y2=-4 ∴=x1x2+y1y2=(ty1+1)(ty2+1)+y1y2 =t2y1y2+t(y1+y2)+1+y1y2 =-4t2+4t2+1-4=-3. (Ⅱ)设l:x=ty+b代入抛物线y2=4x,消去x得 y2-4ty-4b=0设A(x1,y1),B(x2,y2) 则y1+y2=4t,y1y2=-4b ∴=(ty1+b)(ty2+b)+y1y2 =t2y1y2+bt(y1+y2)+b2+y1y2 =-4bt2+4bt2+b2-4b=b2-4b 令b2-4b=-4,∴b2-4b+4=0∴b=2. ∴直线l过定点(2,0).
复制答案
考点分析:
相关试题推荐
已知二阶矩阵M有特征值λ=8及对应的一个特征向量manfen5.com 满分网,并且矩阵M对应的变换将点(-1,2)变换成(-2,4).
(1)求矩阵M;
(2)求矩阵M的另一个特征值,及对应的一个特征向量e2的坐标之间的关系.
(3)求直线l:x-y+1=0在矩阵M的作用下的直线l′的方程.
查看答案
如图,在长方体ABCD-A1B1C1D1中,已知AB=4,AD=3,AA1=2.E、F分别是线段AB、BC上的点,且EB=FB=1.
(1)求直线EC1与FD1所成角的余弦值;
(2)求二面角C-DE-C1的平面角的正切值.

manfen5.com 满分网 查看答案
在一次数学考试中,第21题和第22题为选做题.规定每位考生必须且只须在其中选做一题.设4名考生选做每一道题的概率均为manfen5.com 满分网
(1)求其中甲、乙两名学生选做同一道题的概率;
(2)设这4名考生中选做第22题的学生个数为ξ,求ξ的概率分布及数学期望.
查看答案
已知f(x)=ax-ln(-x),x∈(-e,0),manfen5.com 满分网,其中e是自然常数,a∈R.
(1)讨论a=-1时,f(x)的单调性、极值;
(2)求证:在(1)的条件下,manfen5.com 满分网
(3)是否存在实数a,使f(x)的最小值是3,如果存在,求出a的值;如果不存在,说明理由.
查看答案
定义:若数列{An}满足An+1=An2,则称数列{An}为“平方递推数列”.已知数列{an}中,a1=2,且an+1=2an2+2an,其中n为正整数.
(1)设bn=2an+1,证明:数列{bn}是“平方递推数列”,且数列{lgbn}为等比数列;
(2)设(1)中“平方递推数列”{bn}的前n项之积为Tn,即Tn=(2a1+1)(2a2+1)…(2an+1),求数列{an}的通项及Tn关于n的表达式;
(3)记cn=manfen5.com 满分网,求数列{cn}的前n项之和Sn,并求使Sn>2008的n的最小值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.