满分5 > 高中数学试题 >

已知函数f(x)=x3+2bx2+cx-2的图象在与x轴交点处的切线方程是y=5...

已知函数f(x)=x3+2bx2+cx-2的图象在与x轴交点处的切线方程是y=5x-10.
(1)求函数f(x)的解析式;
(2)设函数g(x)=f(x)+manfen5.com 满分网mx,若g(x)的极值存在,求实数m的取值范围以及函数g(x)取得极值时对应的自变量x的值.
(1)利用f(2)=0和f′(2)=5可得关于b,c的两个方程,解出b,c即可. (2)转化为g′(x)=0有实根.根据判别式求出对应的根,在找极值即可. 【解析】 (1)由已知,切点为(2,0),故有f(2)=0, 即4b+c+3=0.① f′(x)=3x2+4bx+c,由已知,f′(2)=12+8b+c=5. 得8b+c+7=0.② 联立①、②,解得c=1,b=-1, 于是函数解析式为f(x)=x3-2x2+x-2. (2)g(x)=x3-2x2+x-2+mx, g′(x)=3x2-4x+1+,令g′(x)=0. 当函数有极值时,△≥0,方程3x2-4x+1+=0有实根, 由△=4(1-m)≥0,得m≤1. ①当m=1时,g′(x)=0有实根x=,在x=左右两侧均有g′(x)>0,故函数g(x)无极值. ②当m<1时,g′(x)=0有两个实根, x1=(2-),x2=(2+), 当x变化时,g′(x)、g(x)的变化情况如下表: 故在m∈(-∞,1)时,函数g(x)有极值; 当x=(2-)时g(x)有极大值; 当x=(2+)时g(x)有极小值.
复制答案
考点分析:
相关试题推荐
已知双曲线C:manfen5.com 满分网=1(a>0,b>0)的离心率为manfen5.com 满分网,右准线方程为x=manfen5.com 满分网
(I)求双曲线C的方程;
(Ⅱ)设直线l是圆O:x2+y2=2上动点P(x,y)(xy≠0)处的切线,l与双曲线C交于不同的两点A,B,证明∠AOB的大小为定值.
查看答案
已知函数f(x)=kx+m,当x∈[a1,b1]时,f(x)的值域为[a2,b2],当x∈[a2,b2]时,f(x)的值域为[a3,b3],…,依此类推,一般地,当x∈[an-1,bn-1]时,f(x)的值域为[an,bn],其中k、m为常数,且a1=0,b1=1.
(1)若k=1,求数列{an},{bn}的通项公式;
(2)若m=2,问是否存在常数k>0,使得数列{bn}满足manfen5.com 满分网.若存在,求k的值;若不存在,请说明理由;
(3)若k<0,设数列{an},{bn}的前n项和分别为Sn,Tn,求(T1+T2+…+T2010)-(S1+S2+…+S2010).
查看答案
如图:PA⊥平面ABCD,ABCD是矩形,PA=AB=1,PD与平面ABCD所成角是30°,点F是PB的中点,点E在边BC上移动.
(1)点E为BC的中点时,试判断EF与平面PAC的位置关系,并说明理由;
(2)无论点E在边BC的何处,PE与AF所成角是否都为定值,若是,求出其大小;若不是,请说明理由;
(3)当BE等于何值时,二面角P-DE-A的大小为45°.

manfen5.com 满分网 查看答案
为了拓展网络市场,腾讯公司为QQ用户推出了多款QQ应用,如“QQ农场”、“QQ音乐”、“QQ读书”等. 市场调查表明,QQ用户在选择以上三种应用时,选择农场、音乐、读书的概率分别为manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网.现有甲、乙、丙三位QQ用户任意选择以上三种应用中的一种进行添加.
(Ⅰ)求三人所选择的QQ应用互不相同的概率;
(Ⅱ)记ξ为三人中选择的应用是QQ农场与QQ音乐的人数之和,求ξ的分布列与数学期望Eξ
查看答案
已知bcosC=(2a-c)cosB,a+c=4,其中A、B、C为△ABC的内角,a、b、c为角A、B、C所对的边.
(1)求角B的大小;    
(2)若b=2manfen5.com 满分网,求△ABC的面积.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.