满分5 > 高中数学试题 >

若(a+2i)i=b+i,其中a、b∈R,i是虚数单位,则a+b=( ) A.-...

若(a+2i)i=b+i,其中a、b∈R,i是虚数单位,则a+b=( )
A.-1
B.1
C.-3
D.3
据复数相等的充要条件,实部与实部相等,虚部与虚部相等,即可求解. 【解析】 因为(a+2i)i=-2+ai=b+i 所以 所以a+b=-1. 故选A
复制答案
考点分析:
相关试题推荐
已知全集U=R,若集合M={x|log2x<2},集合N={x|y=manfen5.com 满分网},则M∩(∁UN)=( )
A.{x|0<x<3}
B.{x|0<x≤3}
C.{x|3<x<4}
D.{x|3≤x<4}
查看答案
已知函数f(x)=x3+2bx2+cx-2的图象在与x轴交点处的切线方程是y=5x-10.
(1)求函数f(x)的解析式;
(2)设函数g(x)=f(x)+manfen5.com 满分网mx,若g(x)的极值存在,求实数m的取值范围以及函数g(x)取得极值时对应的自变量x的值.
查看答案
已知双曲线C:manfen5.com 满分网=1(a>0,b>0)的离心率为manfen5.com 满分网,右准线方程为x=manfen5.com 满分网
(I)求双曲线C的方程;
(Ⅱ)设直线l是圆O:x2+y2=2上动点P(x,y)(xy≠0)处的切线,l与双曲线C交于不同的两点A,B,证明∠AOB的大小为定值.
查看答案
已知函数f(x)=kx+m,当x∈[a1,b1]时,f(x)的值域为[a2,b2],当x∈[a2,b2]时,f(x)的值域为[a3,b3],…,依此类推,一般地,当x∈[an-1,bn-1]时,f(x)的值域为[an,bn],其中k、m为常数,且a1=0,b1=1.
(1)若k=1,求数列{an},{bn}的通项公式;
(2)若m=2,问是否存在常数k>0,使得数列{bn}满足manfen5.com 满分网.若存在,求k的值;若不存在,请说明理由;
(3)若k<0,设数列{an},{bn}的前n项和分别为Sn,Tn,求(T1+T2+…+T2010)-(S1+S2+…+S2010).
查看答案
如图:PA⊥平面ABCD,ABCD是矩形,PA=AB=1,PD与平面ABCD所成角是30°,点F是PB的中点,点E在边BC上移动.
(1)点E为BC的中点时,试判断EF与平面PAC的位置关系,并说明理由;
(2)无论点E在边BC的何处,PE与AF所成角是否都为定值,若是,求出其大小;若不是,请说明理由;
(3)当BE等于何值时,二面角P-DE-A的大小为45°.

manfen5.com 满分网 查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.