满分5 > 高中数学试题 >

如图,△ABC内接于⊙O,AB=AC,直线MN切⊙O于点C,BE∥MN交AC于点...

如图,△ABC内接于⊙O,AB=AC,直线MN切⊙O于点C,BE∥MN交AC于点E.若AB=6,BC=4,求AE的长.

manfen5.com 满分网
由已知中,直线MN切⊙O于点C,由弦线角定理我们易得∠BCM=∠A,再由BE∥MN,我们可得∠BCM=∠EBC,我们可判断出△ABC∽△BEC,由相似三角形对应边成比例,结合AB=6,BC=4,即可求出AE的长. 【解析】 ∵∠BCM=∠A,BE∥MN, ∴∠BCM=∠EBC,∠A=∠EBC.又∠ACB是公共角, ∴△ABC∽△BEC, ∴=. ∵AB=AC=6,BC=4, ∴EC===, ∴AE=AC-EC=.
复制答案
考点分析:
相关试题推荐
已知离心率为manfen5.com 满分网的椭圆C:manfen5.com 满分网+manfen5.com 满分网=1(a>b>0)过点M(manfen5.com 满分网,1),O为坐标原点.
(1)求椭圆C的方程;
(2)已知直线l与椭圆C交于不同的两点A、B,若直线l是圆O:x2+y2=manfen5.com 满分网的一条切线,试证明∠AOB=manfen5.com 满分网.它的逆命题成立吗?若成立,请给出证明;否则,请说明理由.
查看答案
设等比数列{an}的前n项和Sn,首项a1=1,公比manfen5.com 满分网
(Ⅰ)证明:Sn=(1+λ)-λan
(Ⅱ)若数列{bn}满足manfen5.com 满分网,bn=f(bn-1)(n∈N*,n≥2),求数列{bn}的通项公式;
(Ⅲ)若λ=1,记manfen5.com 满分网,数列{cn}的前项和为Tn,求证:当n≥2时,2≤Tn<4.
查看答案
如图,已知四棱锥P-ABCD,底面ABCD为菱形,PA⊥平面ABCD,∠ABC=60°,E,F分别是BC,PC的中点.
(Ⅰ)证明:AE⊥PD;
(Ⅱ)若H为PD上的动点,EH与平面PAD所成最大角的正切值为manfen5.com 满分网,求二面角E-AF-C的余弦值.

manfen5.com 满分网 查看答案
已知函数f(x)=manfen5.com 满分网a2x3-ax2+manfen5.com 满分网,g(x)=-ax+1,其中a>0.
(1)若函数f(x)的图象与函数g(x)的图象有公共点,且在公共点处有相同的切线,试求实数a的值;
(2)在区间(0,manfen5.com 满分网]上至少存在一个实数x,使f(x)>g(x)成立,试求实数a的取值范围.
查看答案
如图所示,质点P在正方形ABCD的四个顶点上按逆时针方向前进.现在投掷一个质地均匀.每个面上标有一个数字的正方体玩具,它的六个面上分别写有两个1.两个2.两个3一共六个数字.质点P从A点出发,规则如下:当正方体上底面出现的数字是1,质点P前进一步(如由A到B);当正方体上底面出现的数字是2,质点P前进两步(如由A到C),当正方体上底面出现的数字是3,质点P前进三步(如由A到D).在质点P转一圈之前连续投掷,若超过一圈,则投掷终止.
(1)求点P恰好返回到A点的概率;
(2)在点P转一圈恰能返回到A点的所有结果中,用随机变量S表示点P恰能返回到A点的投掷次数,求S的数学期望.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.