满分5 > 高中数学试题 >

满足{1}⊊A⊆{1,2,3}的集合A的个数是( ) A.2 B.3 C.4 D...

满足{1}⊊A⊆{1,2,3}的集合A的个数是( )
A.2
B.3
C.4
D.8
集合A一定要含有1元素,且至少要多一个,多的元素只能从2、3中选,所以集合A可以是下面3个集合. 【解析】 A={1}∪B,其中B为{2,3}的子集,且B非空. 显然这样的集合A有3个,即A={1,2}或{1,3}或{1,2,3}. 故选B.
复制答案
考点分析:
相关试题推荐
不等式2x>|x-1|的解集为( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.[1,+∞)
D.manfen5.com 满分网∪(1,+∞)
查看答案
设等比数列{an}的前n项和Sn,首项a1=1,公比manfen5.com 满分网
(Ⅰ)证明:Sn=(1+λ)-λan
(Ⅱ)若数列{bn}满足manfen5.com 满分网,bn=f(bn-1)(n∈N*,n≥2),求数列{bn}的通项公式;
(Ⅲ)若λ=1,记manfen5.com 满分网,数列{cn}的前项和为Tn,求证:当n≥2时,2≤Tn<4.
查看答案
已知椭圆的两焦点与短轴的一个端点的连线构成等腰直角三角形,直线x-y+b=0是抛物线y2=4x的一条切线.
(1)求椭圆的方程;
(2)过点manfen5.com 满分网的动直线L交椭圆C于A、B两点,试问:在坐标平面上是否存在一个定点T,使得以AB为直径的圆恒过点T?若存在,求出点T的坐标;若不存在,请说明理由.
查看答案
已知x∈R,函数f(x)=ax3+bx2+cx+d在x=0处取得极值,曲线y=f(x)过原点O(0,0)和点P(-1,2).若曲线y=f(x)在点P处的切线l与直线y=2x的夹角为45°,且直线l的倾斜角θ∈(manfen5.com 满分网,π),
(Ⅰ)求f(x)的解析式;
(Ⅱ)若函数y=f(x)在区间[2m-1,m+1]上是增函数,求实数m的取值范围;
(Ⅲ)若x1、x2∈[-1,1],求证:f(x1)-f(x2)≤4.
查看答案
如图,多面体ABCDS中,面ABCD为矩形,SD⊥AD,且SD⊥AB,AD=1,AB=2,SD=manfen5.com 满分网
(1)求证:CD⊥平面ADS;
(2)求AD与SB所成角的余弦值;
(3)求二面角A-SB-D的余弦值.

manfen5.com 满分网 查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.