在平面直角坐标系xOy中,已知动点P(x,y)(y≤0)到点F(0.-2)的距离为d
1,到x轴的距离为d
2,且d
1-d
2=2.
(I)求点P的轨迹E的方程;
(Ⅱ)若A、B是(I)中E上的两点,
,过A、B分别作直线y=2的垂线,垂足分别P、Q.证明:直线AB过定点M,且
为定值.
考点分析:
相关试题推荐
某电视台拟举行“团队共享”冲关比赛,其规则如下:比赛共设有“常识关”和“创新关”两关,每个团队共两人,每人各冲一关,“常识关”中有2道不同必答题,“创新关”中有3道不同必答题;如果“常识关”中的2道题都答对,则冲“常识关”成功且该团队获得单项奖励900元,否则无奖励;如果“创新关”中的3道题至少有2道题答对,则冲“创新关”成功且该团队获得单项奖励1800元,否则无奖励,现某团队中甲冲击“常识关”,乙冲击“创新关”,已知甲回答“常识关”中每道题正确的概率都为
,乙回答“创新关”中每道题正确的概率都为
,且两关之间互不影响,每道题回答正确与否相互独立.
(I)求此冲关团队在这5道必答题中只有2道回答正确且没有获得任何奖励的概率;
(Ⅱ)求此冲关团队在这5道必答题中只有3道回答正确且获得1800元奖金的概率.
查看答案
如图,边长为1的正三角形SAB所在平面与直角梯形ABCD所在平面垂直,且AB∥CD,BC⊥AB,BC=1,CD=2,E、F分别是线段SD、CD的中点.
(I)求证:平面AEF∥平面SBC;
(Ⅱ)求二面角S-AC-F的大小.
查看答案
已知函数f(x)=2sinxcos(x+
)-cos2x+m.
(I)求函数f(x)的最小正周期;
(Ⅱ)当x∈[-
,
]时,函数f(x)的最小值为-3,求实数m的值.
查看答案
如图,在半径为l的球O中.AB、CD是两条互相垂直的直径,半径OP⊥平面ACBD.点E、F分别为大圆上的劣弧
、
的中点,给出下列结论:
①E、F两点的球面距离为
;
②向量
在向量
方向上的投影恰为
;
③若点M为大圆上的劣弧
的中点,则过点M且与直线EF、PC成等角的直线有无数条;
④球面上到E、F两点等距离的点的轨迹是两个点;
其中你认为正确的所有结论的序号为
.
查看答案
已知椭圆C:
的右焦点为F,右准线l与x轴交于点B,点A在l上,若△ABO(O为坐标原点)的重心G恰好在椭圆上,则|
|=
.
查看答案