满分5 > 高中数学试题 >

已知某椭圆的焦点是F1(-4,0)、F2(4,0),过点F2,并垂直于x轴的直线...

已知某椭圆的焦点是F1(-4,0)、F2(4,0),过点F2,并垂直于x轴的直线与椭圆的一个交点为B,且|F1B|+|F2B|=10.椭圆上不同的两点A(x1,y1)、C(x2,y2)满足条件:|F2A|、|F2B|、|F2C|成等差数列.
(1)求该椭圆的方程;
(2)求弦AC中点的横坐标;
(3)设弦AC的垂直平分线的方程为y=kx+m,求m的取值范围.

manfen5.com 满分网
(1)由椭圆定义及条件知2a=|F1B|+|F2B|=10,得a=5.又c=4,所以b==3.由此可知椭圆方程为+=1. (2)由点B(4,yB)在椭圆上,得|F2B|=|yB|=.因为椭圆右准线方程为x=,离心率为.根据椭圆定义,有|F2A|=(-x1),|F2C|=(-x2).由|F2A|、|F2B|、|F2C|成等差数列,得x1+x2=8.由此可知x===4. (3)由A(x1,y1),C(x2,y2)在椭圆上,得9()+25()()=0(x1≠x2).将=x=4,=y,=-(k≠0)代入上式,得9×4+25y(-)=0(k≠0).由此可求出m的取值范围. (1)【解析】 由椭圆定义及条件知 2a=|F1B|+|F2B|=10,得a=5.又c=4, 所以b==3. 故椭圆方程为+=1. (2)【解析】 由点B(4,yB)在椭圆上,得|F2B|=|yB|=. 因为椭圆右准线方程为x=,离心率为. 根据椭圆定义,有|F2A|=(-x1),|F2C|=(-x2). 由|F2A|、|F2B|、|F2C|成等差数列,得(-x1)+(-x2)=2×. 由此得出x1+x2=8. 设弦AC的中点为P(x,y), 则x===4. (3)【解析】 由A(x1,y1),C(x2,y2)在椭圆上,得 9x12+25y12=9×25,④ 9x22+25y22=9×25.⑤ 由④-⑤得9(x12-x22)+25(y12-y22)=0, 即9()+25()()=0(x1≠x2). 将=x=4,=y,=-(k≠0)代入上式,得 9×4+25y(-)=0(k≠0). 由上式得k=y(当k=0时也成立). 由点P(4,y)在弦AC的垂直平分线上,得 y=4k+m, 所以m=y-4k=y-y=-y. 由P(4,y)在线段BB′(B′与B关于x轴对称)的内部,得-<y<. 所以-<m<.
复制答案
考点分析:
相关试题推荐
在经济学中,函数f(x)的边际函数定义为Mf(x)=f(x+1)-f(x).某公司每月生产x台某种产品的收入为R(x)元,成本为C(X)元,且R(x)=3000x-20x2,C(x)=500x+4000(x∈N*).现已知该公司每月生产该产品不超过100台.
(I)求利润函数P(x)I以及它的边际利润函数MP(x);
(II)求利润函数的最大值与边际利润函数的最大值之差.
查看答案
如图,四棱锥P-ABCD的底面为等腰梯形,AB∥CD,从丄仙,垂足为H,PH是四棱锥的高..已知AB=manfen5.com 满分网,∠APB=∠ADB=60°.
(I )证明:平面ABC丄平面PBD;
(II )求四棱锥P-ABCD的体积;
(III)求二面角P-AD-B的正切值.

manfen5.com 满分网 查看答案
已知函数manfen5.com 满分网
(I)求函数f(x)的最小正周期;
(II)求f(x)在manfen5.com 满分网上的最大值和最小值.
查看答案
现有编号分别为1,2,3,4的四道不同的代数题和编号分别为5,6,7的三道不同的几何题.甲同学从这七道题中一次随机抽取两道题,每题被抽到的概率是相等的,用符号(x,y)表示事件“抽到的两道题的编号分别为x、y,且x<y
(I)总共有多少个基本事件?并全部列举出来;
(II)求甲同学所抽取的两道题的编号之和大于6且小于10的概率.
查看答案
定义在R上的奇函数f(x)满足:f(x+2)=-f(x)且当0≤x≤1时f(x)=x则这个函数是以    为周期的周期函数,且f(7,5)=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.