由f(x)=2x-1,0<x1<x2<2,知x1-x2<0,f(x2)-f(x1)>0,故(1)成立,(2)不成立,(3)成立;再由,,知(4)不成立.
【解析】
∵f(x)=2x-1,0<x1<x2<2,
∴x1-x2<0,f(x2)-f(x1)>0,
∴(x1-x2)[f(x2)-f(x1)]<0,故(1)成立;
∵f(x)=2x-1,0<x1<x2<2,
∴0<f(x1)<f(x2)<3,
∴x2f(x1)<x1f(x2)不成立,即(2)不成立;
∵f(x)=2x-1,0<x1<x2<2,
∴0<f(x1)<f(x2)<3,
∴f(x2)-f(x1)>x2-x1成立,即(3)成立;
∵f(x)=2x-1,0<x1<x2<2,
∴,
,
∴不成立.
故选B.