满分5 > 高中数学试题 >

如图,已知四棱锥的P-ABCD,PA⊥底面ABCD,AB∥CD,AB⊥AD且AP...

如图,已知四棱锥的P-ABCD,PA⊥底面ABCD,AB∥CD,AB⊥AD且AP=AB=3,
AD=manfen5.com 满分网,∠ABC=60°.
(Ⅰ)点F为线段PB上一点,PF:FB=2,求证:CF∥面ADP;
(Ⅱ)求二面角F-AC-B的余弦值.

manfen5.com 满分网
(I)过点C做AB的垂线CE,E为垂足,我们易求出AE的值,进而A为原点建立空间直角坐标系,求出直线CF的方向向量和平面ADP的法向量,根据两个向量的数量积为0,得到两个向量垂直,进而得到CF∥面ADP; (Ⅱ)分别求出平面FAC和平面ABC的法向量,代入向量夹角公式,即可求出二面角F-AC-B的余弦值. 证明:(I)过点C做AB的垂线CE,E为垂足 ∵AB⊥AD ∴AD∥CE 又∵AB∥CD ∴四边形ABCD为平行四边形 ∴CE=AD= 在Rt△BCE中,CE=BEtan60° ∴BE=1 ∴AE=2…3分 如图,以A为原点建立空间直角坐标系,则A(0,0,0),B(0,3,0),P(0,0,3),C(,2,0) ∵PF:FB=2:1 ∴F(0,2,1) ∵=(-,0,1),=(0,3,0) 又∵•=0, ∴⊥, ∵AB⊥平面ADP,即平面ADP的法向量为, 故CF∥平面ADP…6分 (II)设平面AFC的法向量为=(x,y,z),则⊥,⊥, 即•=0,•=0, 即 则=(1,,) 又AP⊥平面ACB,故=(0,0,3)为平面ACB的一个法向量, ∴二面角F-AC-B的余弦值为==…12分
复制答案
考点分析:
相关试题推荐
设数列{an}的前n项和为Sn,已知a1=1,Sn+1=4an+1.
(Ⅰ)设bn=an+1-2an,证明数列{bn}是等比数列;
(Ⅱ)求数列{an}的通项公式和前n项和.
查看答案
在区间[0,1]上随机取两个数m,n,则关于函数f(x)=manfen5.com 满分网-nx+1在[1,+∞)上为增函数的概率为    查看答案
如图所示,一个空间几何体的主视图和左视图都是边长为1的正方形,俯视图是一个直径为1的圆,用一段铁丝从几何体的A处缠绕几何体两周到达B处,则铁丝的最短长度为   
manfen5.com 满分网 查看答案
已知抛物线y2=2px(p>0)的焦点为F,过F作倾斜角为45°的直线与抛物线交于A、B两点,若线段AB的长为16,则p的值等于    查看答案
△ABC的三内角A,B,C所对边长分别是a,b,c,设向量manfen5.com 满分网manfen5.com 满分网,若manfen5.com 满分网,则角B的大小为     查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.