满分5 > 高中数学试题 >

设函数f(x)=(x+1)2-2klnx. (1)当k=2时,求函数f(x)的增...

设函数f(x)=(x+1)2-2klnx.
(1)当k=2时,求函数f(x)的增区间;
(2)当k<0时,求函数g(x)=f′(x)在区间(0,2]上的最小值.
(1)因为要求函数的增区间所以求出f′(x)令其大于零,同时考虑到x>0,故求出增区间即可; (2)因为g(x)=f'(x),分区间讨论k的取值并根据a+b≥2当且仅当a=b时取等号的方法求出最小值即可. 解(1)k=2,f(x)=(x+1)2-4lnx. 则f′(x)==>0,(此处用“≥”同样给分) 注意到x>0,故x>1,于是函数的增区间为(1,+∞).(写为[1,+∞)同样给分) (2)当k<0时,g(x)=f′(x)=. g(x)=≥,当且仅当x=时,上述“≥”中取“=”. ①若∈(0,2],即当k∈[-4,0)时,函数g(x)在区间(0,2]上的最小值为; ②若k<-4,则在(0,2]上为负恒成立,故g(x)在区间(0,2]上为减函数, ,于是g(x)在区间(0,2]上的最小值为g(2)=6-k. 综上所述,当k∈[-4,0)时,函数g(x)在区间(0,2]上的最小值为; 当k<-4时,函数g(x)在区间(0,2]上的最小值为6-k.
复制答案
考点分析:
相关试题推荐
若椭圆manfen5.com 满分网过点(-3,2)离心率为manfen5.com 满分网,⊙O的圆心为原点,直径为椭圆的短轴,⊙M的方程为(x-8)2+(y-6)2=4,过⊙M上任一点P作⊙的切线PA、PB切点为A、B.
(1)求椭圆的方程;
(2)若直线PA与⊙M的另一交点为Q当弦PQ最大时,求直线PA的直线方程;
(3)求manfen5.com 满分网的最大值与最小值.
查看答案
建筑业中,建筑成本费用由城市土地使用权取得费和材料工程费两部分组成.某市今年的土地使用权取得费为2000元/m2;材料工程费在建造第一层时为400元/m2;以后每增加一层费用增加40元/m2;求楼高设计为多少层时,才能使平均每平方米建筑面积的成本费最省.
查看答案
如图在直三棱柱ABC-A1B1C1中,∠ACB=90°,M,N分别是A1B和B1C1的中点.
(1)求证:BC∥平面MNB1
(2)当AC=AA1时,求证:平面MNB1⊥平面A1CB.

manfen5.com 满分网 查看答案
已知manfen5.com 满分网,函数f(x)=a•b+|b|2
(1)求函数f(x)的最小正周期;
(2)当manfen5.com 满分网时,求函数f(x)的值域.
查看答案
在△ABC中,若AB⊥AC,AC=b,BC=a,则△ABC的外接圆半径manfen5.com 满分网,将此结论拓展到空间,可得出的正确结论是:在四面体S-ABC中,若SA、SB、SC两两垂直,SA=a,SB=b,SC=c,则四面体S-ABC的外接球半径R=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.