满分5 > 高中数学试题 >

如图所示在直角梯形OABC中,∠COA=∠OAB=,OA=OS=AB=1,OC=...

如图所示在直角梯形OABC中,∠COA=∠OAB=manfen5.com 满分网,OA=OS=AB=1,OC=4,
点M是棱SB的中点,N是OC上的点,且ON:NC=1:3,以OC,OA,OS所在直线
建立空间直角坐标系O-xyz.
(1)求异面直线MN与BC所成角的余弦值;
(II)求MN与面SAB所成的角的正弦值.

manfen5.com 满分网
(1)先以O为原点,建立如图所示的空间直角坐标系,再求得相关点的坐标,再求的相关向量的坐标,最后用向量夹角公式求解. (2)欲求MN与面SAB所成的角的正弦值,先利用待定系数法求出平面SAB的一个法向量,最后用向量夹角公式求解即可. 【解析】 如图建系,则S(0,0,1)C(4,0,0)A(0,1,0)B(1,1,0) 所以N(1,0,0)M((2分) (1)=(-3,1,0)cos<(5分) ∴直线MN与BC所成角的余弦值为(6分) (2)设平面SAB的一个法向量为 则=(a,b,c)•(1,1,-1)=a+b-c=0=(a,b,c)•(0,1,-1)=b-c=0 令b=1可得法向量(8分) cos<(9分) ∴直线MN与面SAB所成角的正弦值为(10分)
复制答案
考点分析:
相关试题推荐
盒子中装着有标数字1,2,3,4,5的上卡片各2张,从盒子中任取3张卡片,按3张卡片上最大数字的8倍计分,每张卡片被取出的可能性都相等,用ξ表示取出的3张卡片上的最大数字,求:
(1)取出的3张卡片上的数字互不相同的概率;
(2)随机变量ξ的概率分布和数学期望;
(3)计分不小于20分的概率.
查看答案
已知由正数组成的两个数列{an},{bn},如果an,an+1是关于x的方程x2-2bn2x+anbnbn+1=0的两根.
(1)求证:{bn}为等差数列;
(2)已知a1=2,a2=6,分别求数列{an},{bn}的通项公式;
(3)求数manfen5.com 满分网
查看答案
设函数f(x)=(x+1)2-2klnx.
(1)当k=2时,求函数f(x)的增区间;
(2)当k<0时,求函数g(x)=f′(x)在区间(0,2]上的最小值.
查看答案
若椭圆manfen5.com 满分网过点(-3,2)离心率为manfen5.com 满分网,⊙O的圆心为原点,直径为椭圆的短轴,⊙M的方程为(x-8)2+(y-6)2=4,过⊙M上任一点P作⊙的切线PA、PB切点为A、B.
(1)求椭圆的方程;
(2)若直线PA与⊙M的另一交点为Q当弦PQ最大时,求直线PA的直线方程;
(3)求manfen5.com 满分网的最大值与最小值.
查看答案
建筑业中,建筑成本费用由城市土地使用权取得费和材料工程费两部分组成.某市今年的土地使用权取得费为2000元/m2;材料工程费在建造第一层时为400元/m2;以后每增加一层费用增加40元/m2;求楼高设计为多少层时,才能使平均每平方米建筑面积的成本费最省.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.