①AC⊥BE,可由线面垂直证两线垂直;
②EF∥平面ABCD,可由线面平行的定义请线面平行;
③三棱锥A-BEF的体积为定值,可证明棱锥的高与底面积都是定值得出体积为定值;
④异面直线AE、BF所成的角为定值,可由两个极好位置说明两异面直线所成的角不是定值.
【解析】
①AC⊥BE,由题意及图形知,AC⊥面DD1B1B,故可得出AC⊥BE,此命题正确;
②EF∥平面ABCD,由正方体ABCD-A1B1C1D1的两个底面平行,EF在其一面上,故EF与平面ABCD无公共点,故有EF∥平面ABCD,此命题正确;
③三棱锥A-BEF的体积为定值,由几何体的性质及图形知,三角形BEF的面积是定值,A点到面DD1B1B距离是定值,故可得三棱锥A-BEF的体积为定值,此命题正确;
④异面直线AE、BF所成的角为定值,由图知,当F与B1重合时,令上底面顶点为O,则此时两异面直线所成的角是∠A1AO,当E与D1重合时,此时点F与O重合,则两异面直线所成的角是OBC1,此二角不相等,故异面直线AE、BF所成的角不为定值.
综上知①②③正确
故答案为①②③