满分5 > 高中数学试题 >

如图,正方形ABCD和四边形ACEF所在的平面互相垂直.EF∥AC,AB=,CE...

如图,正方形ABCD和四边形ACEF所在的平面互相垂直.EF∥AC,AB=manfen5.com 满分网,CE=EF=1.
(Ⅰ)求证:AF∥平面BDE;
(Ⅱ)求证:CF⊥平面BDE.

manfen5.com 满分网
(Ⅰ)证明平面BDE外的直线AF平行平面BDE内的直线GE,即可证明AF∥平面BDE; (Ⅱ)证明CF垂直平面BDF内的两条相交直线:BD、EG,即可证明求CF⊥平面BDF; 证明:(Ⅰ)设AC于BD交于点G. 因为EF∥AG,且EF=1,AG=AC=1, 所以四边形AGEF为平行四边形, 所以AF∥EG, 因为EG⊂平面BDE,AF⊄平面BDE, 所以AF∥平面BDE. (Ⅱ)连接FG.因为EF∥CG,EF=CG=1, 且CE=1,所以平行四边形CEFG为菱形.所以CF⊥EG. 因为四边形ABCD为正方形,所以BD⊥AC. 又因为平面ACEF⊥平面ABCD,且平面ACEF∩平面ABCD=AC, 所以BD⊥平面ACEF. 所以CF⊥BD.又BD∩EG=G, 所以CF⊥平面BDE.
复制答案
考点分析:
相关试题推荐
已知数列{an}满足a1+2a2+22a3+…+2n-1an=n2(n∈N*
(1)求数列{an}的通项公式;
(2)求数列{an}的前n项和Sn
查看答案
已知函数f(x)=cos(2x-manfen5.com 满分网)+sin2x-cos2x.
(I)求函数f(x)的单调减区间;
(II)若f(a)=manfen5.com 满分网,2a是第一象限角,求sin2a的值.
查看答案
甲、乙二人用4张扑克牌(分别是红桃2、红桃3、红桃4、方块4)玩游戏,他们将扑克牌洗匀后,背面朝上放在桌面上,甲先抽,乙后抽,抽出的牌不放回,各抽一张.
(1)设(i,j)分别表示甲、乙抽到的牌的数字,写出甲、乙二人抽到的牌的所有情况
(2)若甲抽到红桃3,则乙抽到的牌面数字比3大的概率是多少?
(3)甲、乙约定:若甲抽到的牌的牌面数字比乙大,则甲胜;否则,乙胜.你认为此游戏是否公平?请说明你的理由.
查看答案
选做题(请考生在以下三个小题中任选一题作答,如果多做,则按所做的第一题评阅记分)
(1)已知曲线C的参数方程为manfen5.com 满分网(t为参数,a∈R),点M(5,4)在曲线C 上,则曲线C的普通方程为   
(2)已知不等式x+|x-2c|>1的解集为R,则正实数c的取值范围是   
(3)如图,PC切圆O于点C,割线PAB经过圆心A,PC=4,PB=8,则S△OBC   
manfen5.com 满分网 查看答案
已知双曲线manfen5.com 满分网=1的离心率为2,焦点与椭圆manfen5.com 满分网的焦点相同,那么双曲线的焦点坐标为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.