满分5 > 高中数学试题 >

已知m,n是正数,证明:≥m2+n2.

已知m,n是正数,证明:manfen5.com 满分网≥m2+n2
不等式两边同乘mn,然后利用作差法进行化简,最后因式分解判定符号,即可证得结论. 证明:两边同乘mn,得 m4+n4≥m3n+n3m,m,n>0 作差得,m4+n4-m3n-n3m=m3(m-n)+n3(n-m)=(m3-n3)(m-n)=(m-n)2(m2+mn+n2)≥0, ∴≥m2+n2.
复制答案
考点分析:
相关试题推荐
已知A是曲线ρ=12sinθ上的动点,B是曲线manfen5.com 满分网上的动点,试求线段AB长的最大值.
查看答案
已知直角坐标平面xOy上的一个变换是先绕原点逆时针旋转45°,再作关于x轴反射变换,求这个变换的逆变换的矩阵.
查看答案
过圆O外一点A作圆O的两条切线AT、AS,切点分别为T、S,过点A作圆O的割线APN,证明:manfen5.com 满分网

manfen5.com 满分网 查看答案
设数列{an}是一个无穷数列,记manfen5.com 满分网,n∈N*
(1)若{an}是等差数列,证明:对于任意的n∈N*,Tn=0;
(2)对任意的n∈N*,若Tn=0,证明:an是等差数列;
(3)若Tn=0,且a1=0,a2=1,数列bn满足manfen5.com 满分网,由bn构成一个新数列3,b2,b3,…,设这个新数列的前n项和为Sn,若Sn可以写成ab,(a,b∈N,a>1,b>1),则称Sn为“好和”.问S1,S2,S3,…,中是否存在“好和”,若存在,求出所有“好和”;若不存在,说明理由.
查看答案
设函数f(x)=x(x-1)2,x>0.
(1)求f(x)的极值;
(2)设0<a≤1,记f(x)在(0,a]上的最大值为F(a),求函数manfen5.com 满分网的最小值;
(3)设函数g(x)=lnx-2x2+4x+t(t为常数),若使g(x)≤x+m≤f(x)在(0,+∞)上恒成立的实数m有且只有一个,求实数m和t的值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.