由题意当n∈N*时,定义函数N(n)表示n的最大奇因数,利用此定义有知道:N(1)=1,N(2)=1,N(3)=3,N(4)=1,N(5)=5,N(6)=3,N(7)=7,N(8)=1,N(9)=9,N(10)=5,…从写出的这些项及S(n)=N(1)+N(2)+N(3)+…N(2n)利用累加法即可求得.
【解析】
因为当n∈N*时,定义函数N(n)表示n的最大奇因数,利用此定义有知道:N(1)=1,N(2)=1,N(3)=3,N(4)=1,N(5)=5,N(6)=3,N(7)=7,N(8)=1,N(9)=9,N(10)=5,…,N(所以Sn=N(1)+N(2)+N(3)+N(4)+…+N(2n),
而S2-S1=N(3)+N(4)=4,
S3-S2=N(5)+N(6)+N(7)+N(8)=16,
S4-S3=64,
…
Sn-Sn-1=N(2n-1+1)+N(2n-1+2)+…+N(2n-1+2n-1)=4n-1.
以上各式相加得:,而S1=N(1)+N(2)=2,代入得到:.