满分5 > 高中数学试题 >

已知如图,斜三棱柱ABC-A1B1C1的侧面A1ACC1与底面ABC垂直,∠AB...

已知如图,斜三棱柱ABC-A1B1C1的侧面A1ACC1与底面ABC垂直,∠ABC=90°,BC=2,AC=2manfen5.com 满分网,且AA1⊥A1C,AA1=A1C.
(1)求侧棱A1A与底面ABC所成角的大小;
(2)求侧面A1ABB1与底面ABC所成二面角的大小;
(3)求顶点C到侧面A1ABB1的距离.

manfen5.com 满分网
(1)要求侧棱A1A与底面ABC所成角的大小;必须先找出线面角,就是∠A1AC; (2)要求侧面A1ABB1与底面ABC所成二面角的大小;利用三垂线定理作出角,即作DE⊥AB,垂足为E,连A1E,则由A1D⊥面ABC,得A1E⊥AB.所以∠A1ED是面A1ABB1与面ABC所成二面角的平面角.求解即可; (3)求顶点C到侧面A1ABB1的距离,可以应用等体积法求解,也可以直接作出距离解三角形即可. (1)【解析】 如图作A1D⊥AC,垂足为D,由面A1ACC1⊥面ABC,得A1D⊥面ABC, 所以∠A1AD为A1A与面ABC所成的角. 因为AA1⊥A1C,AA1=A1C, 所以∠A1AD=45°为所求. (2)【解析】 作DE⊥AB,垂足为E,连A1E,则由A1D⊥面ABC,得A1E⊥AB. 所以∠A1ED是面A1ABB1与面ABC所成二面角的平面角. 由已知,AB⊥BC,得ED∥BC. 又D是AC的中点,BC=2,AC=2, 所以DE=1,AD=A1D=,tan∠A1ED==. 故∠A1ED=60°为所求. (3)解法一:由点C作平面A1ABB1的垂线,垂足为H, 则CH的长是C到平面A1ABB1的距离. 连接HB,由于AB⊥BC,得AB⊥HB. 又A1E⊥AB,知HB∥A1E,且BC∥ED, 所以∠HBC=∠A1ED=60° 所以CH=BCsin60°=为所求. 解法二:连接A1B. 根据定义,点C到面A1ABB1的距离,即为三棱锥C-A1AB的高h. 由得, 即 所以为所求.
复制答案
考点分析:
相关试题推荐
袋中装有若干个质地均匀大小相同的红球和白球,白球数量是红球数量的两倍.每次从袋中摸出一个球,然后放回.若累计3次摸到红球则停止摸球,否则继续摸球直至第5次摸球后结束.
(Ⅰ)求摸球3次就停止的事件发生的概率;
(Ⅱ)记摸到红球的次数为ξ,求随机变量ξ的分布列及其期望.
查看答案
在锐角△ABC中,角A,B,C所对的边分别为a,b,c,已知manfen5.com 满分网
(1)求manfen5.com 满分网的值;
(2)若a=2,manfen5.com 满分网,求b的值.
查看答案
关于函数f(x)=4sin(πx+manfen5.com 满分网),x∈R,有下列命题:
①对任意x∈R,有f(x+1)=-f(x)成立;
②y=f(x)在区间[0,1]上的最小值为-4;
③y=f(x)的图象关于点(-manfen5.com 满分网,0)对称;
④y=f(x)的图象关于直线x=manfen5.com 满分网对称.
其中正确的命题的序号是    .(注:把你认为正确的命题的序号都填上.) 查看答案
设双曲线manfen5.com 满分网-manfen5.com 满分网=1的右顶点为A,右焦点为F.过点F平行于双曲线的一条渐近线的直线与双曲线交于点B,则△AFB的面积为    查看答案
正四棱锥的各棱长都为manfen5.com 满分网,各顶点都在同一个球面上,则该球的表面积为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.