满分5 > 高中数学试题 >

以下结论正确的是( ) A.命题“对边平行且相等的四边形是平行四边形”不是全称命...

以下结论正确的是( )
A.命题“对边平行且相等的四边形是平行四边形”不是全称命题
B.命题“∃x∈R,x2+x+4≤0”的否定是“∀x∈R,x2+x+4≥0”
C.“a=b”是“ac=bc”的必要不充分条件
D.“a+5是无理数”是“a是无理数”的充要条件
本题考查的知识点是必要条件、充分条件与充要条件的判断及不等式的性质,我们根据充要条件的定义对题目中的四个答案逐一进行分析即可得到答案. 【解析】 对于A:命题“对边平行且相等的四边形是平行四边形”是全称命题,故错; 对于B:∵对命题“∃x∈A,P(X)”的否定是:“∀x∈A,¬P(X)” ∴对命题“∃x∈R,x2+x+4≤0”的否定是“∀x∈R,x2+x+4<0” 故错; ∵C中“a=b”⇒“ac=bc”为真命题, 但当c=0时,“ac=bc”⇒“a=b”为假命题, 故“a=b”是“ac=bc”的充分不必要条件,故C为假命题; ∵D中“a+5是无理数”⇒“a是无理数”为真命题, “a是无理数”⇒“a+5是无理数”也为真命题, 故“a+5是无理数”是“a是无理数”的充要条件,故D为真命题; 故选D.
复制答案
考点分析:
相关试题推荐
已知复数manfen5.com 满分网为实数,则实数m的值为( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.-manfen5.com 满分网
D.-manfen5.com 满分网
查看答案
已知集合M={x|y=ln(9-x2}),N={y|y=21-x},集合M∩N为( )
A.(0,3)
B.(1,3)
C.(-3,1)
D.(-∞,3)
查看答案
已知点P是直角坐标平面内的动点,点P到直线manfen5.com 满分网(p是正常数)的距离为d1,到点manfen5.com 满分网的距离为d2,且d1-d2=1.(1)求动点P所在曲线C的方程;
(2)直线l 过点F且与曲线C交于不同两点A、B,分别过A、B点作直线manfen5.com 满分网 的垂线,对应的垂足分别为M、N,求证=manfen5.com 满分网
(3)记S1=S△FAM,S2=S△FMN,S3=S△FEN(A、B、M、N是(2)中的点),manfen5.com 满分网,求λ 的值.
查看答案
已知函数manfen5.com 满分网是奇函数,定义域为区间D(使表达式有意义的实数x 的集合).
(1)求实数m的值,并写出区间D;
(2)若底数a满足0<a<1,试判断函数y=f(x)在定义域D内的单调性,并说明理由;
(3)当x∈A=[a,b)(A⊆D,a是底数)时,函数值组成的集合为[1,+∞),求实数a、b的值.
查看答案
已知函数manfen5.com 满分网,数列{an}满足a1=a(a≠-2,a∈R),an+1=f(an)(n∈N*).
(1)若数列{an}是常数列,求a的值;
(2)当a1=2时,记manfen5.com 满分网,证明数列{bn}是等比数列,并求出通项公式an
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.